Using colour exhibited by venous leg ulcers to develop a range of hues that represent the clinical manifestations of erythema and wet necrotic tissue.

Submitted by
William George McGuiness RN
Diploma of Teaching (Nursing)
Bachelor of Education (Nursing)
Master of Nursing Studies

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

Department of Human Physiology
Faculty of Medicine

Flinders University
Bedford Park, South Australia, 5042
Australia
Dedication

I dedicate this thesis to my late father who passed away as the thesis was being written. The standards he set and his undying love provided me with the commitment and resourcefulness required to undertake the study and complete the thesis. The pride he derived from my achievements will remain with me always.
Acknowledgments

Whilst this thesis has one author listed on the title page it is a culmination of work that has involved the support of several other people.

I would like to publicly thank my supervisors, Associate Professor Tim Neild, Professor Sandra Dunn and Dr Merrill Jones for their mentorship, perseverance and encouragement as the ideas that initiated this project were transformed into a thesis.

I would like to further thank Dr Michael Bailey whose statistical support was much appreciated during the design of this project and the analysis of the findings.

To my wife Wendy McGuiness and daughter Christine McGuiness I would like to acknowledge the support they have provided. If I needed encouragement, time to work, or relief from my family duties Wendy and Christine were able to accommodate my needs without complaint. This thesis is as much a testament to their patience as it is to the research undertaken.

Finally, I would like to thank the patients and clinicians who agreed to participate in this study; the project would not have been possible without their willingness to provide time and support.
TABLE OF CONTENTS

DEDICATION ...II

ACKNOWLEDGMENTS ..III

TABLE OF CONTENTS ... IV

LIST OF TABLES .. VIII

LIST OF FIGURES .. X

SUMMARY .. XII

STATEMENT OF AUTHORSHIP ..XIV

1. CHAPTER ONE: BACKGROUND ..1

1.1. Chronic Venous Insufficiency (CVI) defined ... 2

1.2. The prevalence of the condition ... 7

1.2.1. Overall prevalence .. 8

1.2.2. Prevalence across geographic locations and associated life style 10

1.2.3. The influence of age and gender on prevalence .. 18

1.3. Chronic Venous Insufficiency (CVI) aetiology ... 21

1.3.1. Normal venous function ... 22

1.3.2. Venous insufficiency .. 25

1.3.3. Clinical manifestations and associated pathophysiology 26

1.3.4. Associated factors ... 36

1.4. The effect on the patient and their society ... 39

1.4.1. The financial costs ... 39

1.4.2. The impact on Quality of Life .. 43

1.5. Chapter summary ... 46

2. CHAPTER TWO: THE SIGNIFICANCE OF OBJECTIVE ASSESSMENT48

2.1. Diagnosing the condition ... 49

2.2. Identification and localisation of reflux ... 50

2.2.1. Phlebography ... 50

2.2.2. Doppler ultrasound ... 51

2.2.3. Duplex scanning .. 52

2.2.4. Thermography ... 53

2.2.5. Ankle Brachial Index ... 54
5.1. Patient demographics ... 187

5.2. Phase 1: Reliability of the system .. 194
 5.2.1. Pilot study .. 195
 5.2.2. Intra-observer reliability .. 210
 5.2.3. Inter-observer reliability .. 223

5.3. Phase 2: Establishing the hue for erythema and wet necrotic tissue...... 241
 5.3.1. Colour range identified .. 243

5.4. Phase 3: Developing a system to highlight areas of erythema and wet necrotic tissue .. 245
 5.4.1. Visual observations ... 247
 5.4.2. Difference in surface area .. 249
 5.4.3. Level of agreement between participating clinicians and areas selected by the computer system .. 257

5.5. Chapter summary ... 265

6. CHAPTER SIX: DISCUSSION AND CONCLUSION268

6.1. Study limitations ... 270
 6.1.1. Potential bias ... 270
 6.1.2. Technological limits ... 271
 6.1.3. Sample size ... 272

6.2. Discussion of the findings ... 274
 6.2.1. The reliability of the method to digitally record the colours exhibited by a venous leg ulcer ... 275
 6.2.2. Colour range identified by clinicians to represent erythema and wet necrotic tissue ... 291
 6.2.3. Consistency between the opinions of the clinician panel when selected areas of erythema and wet necrotic tissue .. 300
 6.2.4. The validity of areas selected as representing erythema and wet necrotic tissue by the computer system ... 306

6.3. Conclusion .. 318
 6.3.1. The significance ... 320
 6.3.2. The challenge ... 321
 6.3.3. The project aim ... 322
 6.3.4. The findings ... 323
 6.3.5. Conclusions drawn .. 326
 6.3.6. Recommendations for further research 329

REFERENCES ..332

APPENDIX B: DATA COLLECTED AT THE TIME OF RECRUITMENT ..381

APPENDIX C: DATA COLLECTED ON SUBSEQUENT EPISODES382

APPENDIX D: INSTRUCTIONS TO CLINICIANS FOR RECORDING A PHOTOGRAPH ...383

APPENDIX E: INVITATION TO EXPERT CLINICIANS385
LIST OF TABLES

TABLE 1 A SUMMARY OF YEAR, LOCATION AND PREVALENCE OF STUDIES................. 15
TABLE 2. RELATIONSHIP OF ANKLE BRACHIAL INDEX TO ARTERIAL STATUS................. 55
TABLE 3 VALUES OF AMBULATORY VENOUS PRESSURE AT P10 .. 56
TABLE 4. C CLASSES OF THE CEAP CLASSIFICATION SYSTEM... 65
TABLE 5. VENOUS CLINICAL SEVERITY SCORE ... 69
TABLE 6. VENOUS SEGMENTAL DISEASE SCORE ... 70
TABLE 4. TIME FRAMEWORK .. 94
TABLE 5. WOUND BED SCORE CRITERIA ... 95
TABLE 6. SPECTRAL COMPONENTS OF A WOUND ... 107
TABLE 7. COUNTRY OF ORIGIN FREQUENCY ... 188
TABLE 8. ASSOCIATED CO-MORBIDITIES ... 189
TABLE 9. FREQUENCY OF ULCER LOCATION ... 190
TABLE 10. DURATIONS OF LEG ULCERS .. 191
TABLE 11. FREQUENCY OF PRODUCTS BEING USED AS PRIMARY DRESSING 192
TABLE 13. PEARSON CORRELATION OF THE PARTICIPANT’S AGE AND THE SIZE OF THE ULCER .. 194
TABLE 14. DIFFERENCE IN HUE MEASUREMENTS FOR PILOT ... 198
TABLE 15. DIFFERENCE IN MEASUREMENTS OF SATURATION IN PILOT STUDY 199
TABLE 16. RESIDUAL ERROR READINGS INDICATED BY PHOTOGRAPHIC ANALYSIS SOFTWARE ... 201
TABLE 17. RESIDUAL ERROR RATES AT SET DISTANCE FROM LIGHT SOURCE 204
TABLE 18. RESIDUAL ERROR RATES AT SET DISTANCE FROM LIGHT SOURCE 204
TABLE 19. RESIDUAL ERROR RATES USING THE IN CAMERA FLASH LIGHT SOURCE ... 205
TABLE 20. RESIDUAL ERROR RATES USING THE IN CAMERA FLASH AND BACKGROUND ... 206
TABLE 21. RESIDUAL ERROR RATES NOT CONTROLLING FOR EXTRANEOUS LIGHT SOURCE ... 206
TABLE 22. RESIDUAL ERROR RATES AT 30 CM FROM LIGHT SOURCE 207
TABLE 23. RESIDUAL ERROR RATES AT 30 CM FROM LIGHT SOURCE USING RE-DEVELOPED FRAME, ULCER-CAM 2 ... 208
TABLE 24. LEVEL OF PARTICIPANT INVOLVEMENT IN THE PROJECT 209
TABLE 25. MEAN HUES AND VARIANCE OF COLOUR FOR EACH PHOTOGRAPHIC SET ... 212
TABLE 26. ANOVA RESULTS FROM INTRA-OBSERVER RELIABILITY TESTING 213
TABLE 27. ULCER SIZE MEASURED IN CM² ACROSS ALL IMAGES USED IN THE INTRA-OBSERVER ANALYSIS ... 217
TABLE 28. CHANGES TO ORIENTATION AND MAGNIFICATION ACROSS PATIENT’S 1ST AND 2ND VISIT USING IMAGES RECORDED BY ONE CLINICIAN .. 221
TABLE 29. ANOVA RESULTS FOR MAGNIFICATION ACROSS PARTICIPANT VISITS 222
TABLE 30. MEAN HUES AND VARIANCE FOR ALL PHOTOGRAPHS TAKEN AT EACH VISIT ... 226
TABLE 31. ANOVA RESULTS FROM INTER-OBSERVER RELIABILITY TESTING 227
TABLE 32. CORRELATION COEFFICIENT ACROSS ALL THREE CLINICIANS 230
TABLE 33. DIFFERENCE IN LOCATION OF THE MALLEOLI BETWEEN THE INITIAL AND SUBSEQUENT PHOTOGRAPHS .. 235
TABLE 34. CORRELATION COEFFICIENT BETWEEN ORIENTATION MEASUREMENTS RECORDED ACROSS CLINICIANS ... 237
TABLE 35. CHANGES TO ORIENTATION RECORDED BY ALL THREE CLINICIANS ACROSS PARTICIPANT VISITS ... 238
TABLE 36. ANOVA OF ORIENTATION BETWEEN THE THREE CLINICIANS OVER DIFFERENT VISITS FOR THE SAME PARTICIPANT ... 239
TABLE 37. CHANGES TO MAGNIFICATION RECORDED BY ALL THREE CLINICIANS ACROSS PARTICIPANT VISITS ... 240
TABLE 38. ANOVA OF MAGNIFICATION BETWEEN THE THREE CLINICIANS OVER DIFFERENT VISITS FOR THE SAME PARTICIPANT ... 241
TABLE 39. DISTRIBUTION OF VARIABLES FOR CLINICIANS AGREEING TO PARTICIPATE .. 242
TABLE 40. DISTRIBUTION OF VARIABLES FOR CLINICIANS RESPONDING 243
TABLE 41. VARIANCE OF SURFACE AREA IDENTIFIED AS ERYTHEMA BY CLINICIANS AND THE COMPUTER SYSTEM .. 251
TABLE 42. VARIANCE OF AREAS SELECTED AS WET NECROTIC TISSUE 253
TABLE 43. ANALYSIS OF VARIANCE FOR AREAS SELECTED AS ERYTHEMA 255
TABLE 44. ANALYSIS OF VARIANCE FOR AREAS SELECTED AS WET NECROTIC TISSUE ... 256
TABLE 45. VAS SCORES RECORDED WHEN PARTICIPATING CLINICIANS WERE JUDGING AREAS OF ERYTHEMA .. 258
TABLE 46. VARIANCE BETWEEN THE OPINIONS OF PARTICIPATING CLINICIANS JUDGING AREAS OF ERYTHEMA SELECTED BY THE COMPUTER SYSTEM 261
TABLE 47. VAS SCORES RECORDED WHEN PARTICIPATING CLINICIANS WERE JUDGING AREAS OF WET NECROTIC TISSUE ... 262
TABLE 48. VARIANCE BETWEEN THE OPINIONS OF PARTICIPATING CLINICIANS JUDGING AREAS OF WET NECROTIC TISSUE SELECTED BY THE COMPUTER SYSTEM ... 264
LIST OF FIGURES

FIGURE 1. SIGNS EXHIBITED BY CHRONIC VENOUS INSUFFICIENCY: OEDEMA, DRY SKIN, HEMOSIDERINE DEPOSITS AND ULCERATION. 29

FIGURE 2. REPRESENTATION OF PROCESSES OF AETIOLOGY FOR CHRONIC VENOUS INSUFFICIENCY 39

FIGURE 3. ALTERNATIVE MEASUREMENT TECHNIQUES FOR LENGTH AND WIDTH 80

FIGURE 4. DIMENSIONS MEASURED FOR AN ELLIPTICAL SHAPE 80

FIGURE 5. GRAPH PAPER COUNTING TECHNIQUE 80

FIGURE 6. SPECTRAL REFLECTANCE CURVE DERIVED FROM A PHOTOGRAPH OF A LEG ULCER 107

FIGURE 7. XYZ GRAPH DEVELOPED BY THE INTERNATIONAL COMMISSION ON ILLUMINATION IN 1931 109

FIGURE 8. HSB COLOUR SPACE 110

FIGURE 9. BRAIN AREAS IDENTIFIED AS BEING INVOLVED IN COLOUR PERCEPTION 115

FIGURE 10. MONDRIAN DISPLAY USED BY VAN ES ET AL. 119

FIGURE 11. CONCAVE CARD USED AND THE INVERSE IMAGE BY BLOJ ET AL. 120

FIGURE 12. ULCER-CAM 146

FIGURE 13. CONTROLLING ORIENTATION OF THE LEG 146

FIGURE 14. DAYLIGHT LIGHT SOURCE SET AT 30° TO THE CAMERA 150

FIGURE 15. COLOUR REFERENCE EXAMPLE AND THE REFERENCE IN SITU 150

FIGURE 16. ADELAIDE SKIN COLOUR MEASUREMENT PROGRAM INTERFACE FOR STANDARDISING THE COLOURS OF EACH PIXEL 153

FIGURE 17. SELECTION OF AREA TO BE ANALYSED AND THE COLOUR SUMMARY PROVIDED BY THE ADELAIDE SKIN COLOUR MEASUREMENT PROGRAM 153

FIGURE 18. REFLECTIONS FROM THE GLOSS SURFACE OF THE FRAME 156

FIGURE 19. ULCER-CAM 2 156

FIGURE 20. BLUE BACKGROUND USED IN ULCER-CAM 1 AND 2 156

FIGURE 21. SELECTION OF PIXELS USING THE MAGIC WAND 179

FIGURE 22. BORDER PLACED AROUND DIFFERENT TISSUE TYPES 179

FIGURE 23. AGE DISTRIBUTION OF THE PATIENT SAMPLE 187

FIGURE 24. ABPI DISTRIBUTION 189

FIGURE 25. DISTRIBUTION OF ULCER SIZE ON THE INITIAL VISIT 191

FIGURE 26. CORRELATION BETWEEN THE PARTICIPANT’S AGE AND THE AGE OF THE ULCER 193

FIGURE 27. CORRELATION BETWEEN THE PARTICIPANT’S AGE AND THE SIZE OF THEIR ULCER 194

FIGURE 28. THREE SEQUENTIAL PHOTOGRAPHS TAKEN DURING ONE EPISODE USING ULCER-CAM 196

FIGURE 29. THREE SEQUENTIAL PHOTOGRAPHS TAKEN OVER TWO EPISODES USING ULCER-CAM 196

FIGURE 30. TWO SEQUENTIAL PHOTOGRAPHS WITH IMAGE 2 OVERLAYED ON IMAGE 1 197

FIGURE 31. METHOD USED FOR TESTING THE EFFECT OF ILLUMINATION AND DIFFERENT DISTANCES FROM THE COLOUR REFERENCE 203

FIGURE 32. AN EXAMPLE OF THREE SEQUENTIAL PHOTOGRAPHS AND THE RESULTANT OVERLAYING OF ALL THREE IMAGES. NOTE THE COLOURED DOT OVER THE INTERNAL MALLEOLUS. 215

FIGURE 33. EXAMPLES OF CHANGES TO ORIENTATION AND MAGNIFICATION ACROSS PARTICIPANT VISITS WITH PHOTOGRAPHS TAKEN BY ONE CLINICIAN 219

FIGURE 34. THREE DIMENSIONAL SCATTER PLOTS OF HUES RECORDED BY THREE DIFFERENT CLINICIANS 228

FIGURE 35. EXAMPLE OF IMAGES TAKEN BY THREE DIFFERENT CLINICIANS AT THE SAME EPISODE 233
FIGURE 36. CORRELATIONS OF ORIENTATION MEASUREMENTS ACROSS ALL THREE CLINICIANS

FIGURE 37. HUE AND SATURATION RANGE REPRESENTING ERYTHEMA

FIGURE 38. HUE AND SATURATION RANGE REPRESENTING WET NECROTIC TISSUE

FIGURE 39. COLOUR RANGE SELECTED FOR PHASE THREE TO REPRESENT EACH TISSUE TYPE

FIGURE 40. COMPARISON OF AREAS SELECTED BY CLINICIANS AND THE COMPUTER SYSTEM FOR IMAGE THREE

FIGURE 41. IMAGE WITH THE HIGHEST VARIATION OF AREAS SELECTED AS ERYTHEMA

FIGURE 42. IMAGE WITH THE HIGHEST VARIATION OF AREAS SELECTED AS WET NECROTIC TISSUE

FIGURE 43. IMAGE YIELDING THE LOWEST LEVEL OF AGREEMENT BETWEEN PARTICIPATING CLINICIANS AND THE COMPUTER SYSTEM FOR ERYTHEMA

FIGURE 44. IMAGE YIELDING THE HIGHEST LEVEL OF AGREEMENT BETWEEN PARTICIPATING CLINICIANS AND THE COMPUTER SYSTEM FOR ERYTHEMA

FIGURE 45. IMAGE WITH THE MOST DIVIDED OPINION BETWEEN JUDGING CLINICIANS FOR ERYTHEMA

FIGURE 46. IMAGE WITH THE HIGHEST LEVEL OF CONSENSUS BETWEEN JUDGING CLINICIANS AND HIGHEST AGREEMENT SCORE

FIGURE 47. IMAGE YIELDING THE LOWEST LEVEL OF AGREEMENT BETWEEN PARTICIPATING CLINICIANS FOR WET NECROTIC TISSUE

FIGURE 48. IMAGE YIELDING THE HIGHEST LEVEL OF AGREEMENT BETWEEN PARTICIPATING CLINICIANS FOR WET NECROTIC TISSUE

FIGURE 49. IMAGE YIELDING THE MOST DIVIDED OPINION BETWEEN PARTICIPATING CLINICIANS JUDGING WET NECROTIC TISSUE SELECTED BY THE COMPUTER SYSTEM

FIGURE 50. IMAGE YIELDING THE HIGHEST LEVEL OF CONSENSUS BETWEEN PARTICIPATING CLINICIANS FOR WET NECROTIC TISSUE

FIGURE 51. EXAMPLE OF THE ULCER-CAM 2 FRAME PROVIDING SUFFICIENT ILLUMINATION WHILE CONTROLLING FOR UNWANTED REFLECTION RESULTING FROM ODEMATOUS SKIN

FIGURE 52. SILHOUETTE WOUND IMAGE SYSTEM

FIGURE 53. THE RANGE IDENTIFIED BY EXPERIENCED CLINICIANS TO REPRESENT ERYTHEMA

FIGURE 54. COMPARISON OF RED COLOURS FOUND BY THIS STUDY WITH THAT FOUND BY SHAI ET AL.

FIGURE 55. VISUAL COMPARISON BETWEEN THE RANGE IDENTIFIED AS WET NECROTIC TISSUE AND THE COLOUR USED TO DEPICT THIS TISSUE IN AN EXAMPLE OF EDUCATIONAL MATERIAL

FIGURE 56. COMPARISON OF YELLOW COLOURS FOUND BY THIS STUDY WITH THAT FOUND BY SHAI ET AL.

FIGURE 57. EXAMPLE OF SIMILARITY BETWEEN CLINICIANS WHEN SELECTING WET NECROTIC TISSUE

FIGURE 58. EXAMPLE OF SIMILARITY BETWEEN CLINICIANS WHEN SELECTING ERYTHEMA

FIGURE 59. EXAMPLE OF PHOTOGRAPHS SENT TO CLINICIANS DURING PHASE TWO AND THREE
SUMMARY

This project sought to develop a system that facilitated the visual inspection of venous leg ulcers by establishing a selection of reliable parameters. The project had three principal aims: to develop a reliable method for capturing the colours exhibited by a venous leg ulcer; to establish a colour range that experienced clinicians believed represented wet necrotic tissue and erythema; and to develop software that highlighted the two manifestations in digital photographs.

The project method was divided into three phases. The first phase examined images taken from twenty-two patients over forty-seven episodes of care. During each episode three sequential images were captured using a frame to control for orientation, magnification and lighting resulting in a bank of 141 images. The reliability of the system to accurately capture colour was then determined by examining the amount of colour variation recorded across the set of three images taken at each episode. The second phase asked eight experienced clinicians to examine a set of twenty photographs taken from the bank established in phase one. On each photograph the clinicians were asked to identify areas of wet necrotic tissue or erythema and outline the areas with a colour pen supplied for each manifestation. A colour range was then constructed to represent each manifestation by measuring the range, mean and standard deviation of pixels that were located within the outlined areas. The third phase developed a computerised system that used the colour range established in phase two to highlight areas of a digital image that represented either erythema or wet necrotic tissue. The validity of the
highlighted areas was then tested by asking experienced clinicians to identify their level of agreement with the areas selected by the computer system.

Analysis of the results from phase one indicated that the system used to record images at each episode of care provided a reliable method for maintaining consistent orientation, magnification and replication of colour. Results from phase two yielded a two distinct colour representation of erythema and wet necrotic tissue. Erythema ranged from 360^0 to 378^0 of hue with a mean of 369.21^0, and wet necrotic tissue ranged from 367^0 to 390^0 of hue with a mean of 387.73^0. Results from phase three indicated that whilst clearly delineated areas of erythema and wet necrotic tissue were visible, the validity of the representations was varied. 50 per cent of experienced clinicians agreed with the areas selected as erythema and 60 per cent agreed with the areas selected by the computer system as wet necrotic tissue.

The system developed during this study for recording images of venous leg ulcers provides a reliable method for further research into the visual progression of this disease. However, the colour range identified as being representative of erythema or wet necrotic tissue and the computer system developed to highlight such areas in a digital image, requires further investigation before it is applicable to the clinical setting. The findings do however provide further insights into the varied nature of expert opinion when judging the colour of venous leg ulceration.