The Importance of Non-Anatomic Factors in the Pathogenesis of Obstructive Sleep Apnoea

by

Rajeev Ratnavadivel
BHB, MBChB (Auckland), FRACP

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

August 2009

School of Medicine
Flinders University
South Australia

Adelaide Institute for Sleep Health
Repatriation General Hospital
South Australia
TABLE OF CONTENTS

TABLE OF FIGURES

ABSTRACT

PUBLICATIONS

DECLARATION

ACKNOWLEDGEMENTS

GLOSSARY OF ABBREVIATIONS

CHAPTER 1. Introduction

1.1 Function of the upper airway

1.2 Muscles of the upper airway

1.3 Upper airway anatomy, impairment in OSA

1.4 The passive upper airway during sleep

1.4.1 Factors which influence the passive upper airway during sleep

1.4.1.1 Tracheal traction

1.4.1.2 Neck flexion

1.4.1.3 Mandibular advancement / mouth opening

1.4.1.4 Posture

1.4.1.5 Fluid shifts

1.5 Non anatomic factors that potentially influence upper airway function

1.5.1 Upper airway anatomy does not explain OSA variability over the course of the night

1.5.1.1 Effect of upper airway muscle activity on upper airway collapsibility / diameter

1.5.2 Dependence on upper airway muscle activity in awake OSA subjects

1.5.3 Neural inputs to genioglossus
1.5.3.1 Central drive .. 20
1.5.3.2 Negative upper airway pressure mediated reflexes .. 24
1.5.3.3 Wakefulness tone .. 26
1.5.3.4 Other upper airway muscles ... 27
1.5.4 Summary of airway and ventilatory changes during sleep onset 29
1.5.5 Neuromuscular compensation in OSA .. 30
1.5.6 Role of ventilatory control in OSA .. 32
 1.5.6.1 Implications of abnormal ventilatory control in OSA 32
 1.5.6.2 Loop gain .. 34
1.5.7 Role of arousals in the pathophysiology of OSA .. 41
 1.5.7.1 Causes of respiratory arousal from sleep ... 41
 1.5.7.2 Effect of sleep stage on respiratory arousal .. 43
 1.5.7.3 Effects of OSA on respiratory arousal ... 44
 1.5.7.4 Consequences of arousal on ventilatory control ... 46
 1.5.7.5 Mathematical modelling of the effects of arousal ... 48
 1.5.7.6 Summary of arousal influences in OSA ... 48
1.6 Summary and aims of thesis ... 49

CHAPTER 2. Marked reduction in obstructive sleep apnoea severity in slow wave sleep ... 51
2.1 Introduction .. 51
2.2 Methods .. 53
 2.2.1 Patients .. 53
 2.2.2 Polysomnography ... 53
 2.2.3 Analysis ... 54
CHAPTER 3. A simple circuit to simultaneously provide continuous positive airway pressure and “clamp” end-tidal CO\textsubscript{2} during hyperventilation________66

3.1 Introduction __66

3.2 Methods ..68

3.2.1 Circuit design ..68

3.2.2 Subjects ..69

3.2.3 Experimental protocol ...69

3.2.4 Measurements ..71

3.2.5 Statistics ..71

3.3 Results ..72

3.4 Discussion ..78

3.4.1 Conclusion__80

CHAPTER 4. The influence of CO\textsubscript{2} on upper airway and ventilatory function during sleep in patients with obstructive sleep apnoea____________________81

4.1 Introduction ..81

4.2 Methods ..83

4.2.1 Patients ...83

4.2.2 Equipment ...84

4.2.3 Protocol ..86
CHAPTER 5. Upper airway function and arousability to ventilatory challenge in
slow wave versus stage 2 sleep in obstructive sleep apnoea ____________ 102

5.1 Introduction ___ 102

5.2 Methods __ 104

5.2.1 Subjects ___ 104

5.2.2 Equipment __ 105

5.2.3 Protocol __ 106

5.2.4 Data analysis ___ 107

5.2.5 Statistical analysis __ 109

5.3 Results __ 109

5.4 Discussion ___ 118

5.4.1 Methodological limitations __ 121

5.4.2 Summary and conclusions__ 123

CHAPTER 6. Summary and conclusions ______________________________125

REFERENCES __133
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic for mechanical model of the pharyngeal airway</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic representation of the passive upper airway</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Measuring peak flow at different levels of airway pressure</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Example measurement of P_{CRIT}</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>3 sources of neural input to the genioglossus muscle.</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>Simplified model of ventilatory control system</td>
<td>35</td>
</tr>
<tr>
<td>1.7</td>
<td>Relationship between (VA) and $PACO_2$ at a fixed resting CO_2 production (VCO_2)</td>
<td>37</td>
</tr>
<tr>
<td>2.1</td>
<td>Respiratory and arousal event frequencies as a function of sleep stage</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic of CO_2 clamping circuit with and without CO_2 clamp</td>
<td>74</td>
</tr>
<tr>
<td>3.2</td>
<td>Change in end-tidal CO_2 during different conditions</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Example of one subject breathing via CPAP + clamp circuit vs. on CPAP only</td>
<td>76</td>
</tr>
<tr>
<td>3.4</td>
<td>Inspiratory circuit resistance under different ventilation and clamping conditions</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic of breathing circuit with clamp function on and off</td>
<td>92</td>
</tr>
<tr>
<td>4.2</td>
<td>Examples of 3 different interventions in one subject, pre and post dialdown</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Ventilatory variables pre and post dialdown</td>
<td>94</td>
</tr>
<tr>
<td>4.4</td>
<td>Survival to arousal post dialdown</td>
<td>95</td>
</tr>
<tr>
<td>4.5</td>
<td>Ventilatory variables pre and post arousal from sleep</td>
<td>96</td>
</tr>
<tr>
<td>5.1</td>
<td>Schematic of breathing circuit</td>
<td>114</td>
</tr>
<tr>
<td>5.2</td>
<td>Ventilatory variables and arousal propensity post dialdown</td>
<td>115</td>
</tr>
<tr>
<td>5.3</td>
<td>Peak inspiratory flow vs. airway pressure</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>peak epiglottic pressure before and during airway occlusion</td>
<td>117</td>
</tr>
</tbody>
</table>
ABSTRACT

Obstructive sleep apnoea (OSA) is a common condition characterized by recurrent complete and partial upper airway obstruction. OSA sufferers have been shown to have a significantly smaller upper airway lumen compared to non-OSA sufferers. However, non-anatomical factors of sleep stage, arousability and neuromechanical responses to airway occlusion and chemosensitivity are likely to play a significant part in influencing OSA severity across the night. An exploration of these non-anatomical factors forms the basis for the experiments in this thesis.

In the first experimental chapter presented in this thesis, a detailed retrospective epoch by epoch analysis of nocturnal polysomnography in 253 patients referred to a clinical sleep service was performed to examine differences in sleep apnoea severity and arousal indices across the different stages of sleep, while controlling for posture. Both patients with and without OSA demonstrated significant reductions in respiratory and arousal event frequencies from stage 1 to 4 with intermediate frequencies in REM sleep. Lateral posture was also associated with significant improvements in OSA and arousal frequencies, with an effect size comparable to that of sleep stage. The majority of patients showed significant reductions in OSA severity during slow wave sleep. In non-REM sleep, there was a strong correlation between OSA severity and arousal frequency. These results confirm in a large group of patients, a strong sleep stage dependence of both OSA and arousal frequencies.
The second study in this thesis explores the development of a CO₂ stabilising or ‘clamp’ device to enable the provision of positive airway pressure, and by proportional rebreathing, the maintenance of relatively constant end-tidal CO₂ despite significant hyperventilation. Healthy volunteers performed brief periods of significant voluntary hyperventilation at 2 levels of CPAP with the rebreathing function off and with active CO₂ clamping in randomized order. Compared to CPAP alone, the device substantially attenuated hypocapnia associated with hyperventilation.

The third study of the thesis was designed to investigate if increasing and stabilizing end-tidal CO₂ could improve obstructive breathing patterns during sleep. 10 patients with severe OSA underwent rapid CPAP dialdown from therapeutic to a sub-therapeutic level to experimentally induce acute, partial upper airway obstruction over 2 minute periods repeated throughout the night. The CO₂ clamp device developed and validated in Study 2 was used to determine whether during periods of partial upper airway obstruction with severe flow limitation, (1) increased end-tidal CO₂ resulted in improved airflow and ventilation and (2) clamping end-tidal CO₂ lessened post-arousal ventilatory undershoot. Three conditions were studied in random order: no clamping of CO₂, clamping of end-tidal CO₂ 3-4 mmHg above eucapnic levels during the pre-dialdown baseline period only, and clamping of CO₂ above eucapnia during both baseline and dialdown periods. Elevated CO₂ in the baseline period alone or in the baseline and dialdown periods together resulted in significantly higher peak inspiratory flows and ventilation compared to the no clamp condition. Breath-by-breath analysis immediately pre- and post-arousal showed
higher end-tidal CO₂ despite hyperventilation immediately post-arousal and attenuation of ventilatory undershoot in CO₂ versus non-CO₂ clamped conditions. These results support that modulation of ventilatory drive by changes in pre- and post-arousal CO₂ are likely to importantly influence upper airway and ventilatory stability in OSA.

The fourth study was designed to explore several possible pathophysiological mechanisms whereby obstructive sleep apnoea is improved in stages 3 & 4 (slow wave) versus stage 2 sleep. 10 patients with severe OSA who demonstrated significant reductions in OSA frequency during slow wave sleep on diagnostic investigation were studied. Patients underwent rapid dialdowns from therapeutic CPAP to 3 different pre-determined sub-therapeutic pressures to induce partial airway obstruction and complete airway occlusions in a randomised sequence during the night in both stage 2 and slow wave sleep. Partial airway obstructions and complete occlusions were maintained until arousal occurred or until 2 minutes had elapsed, whichever came first. After airway occlusions, time to arousal, peak pre-arousal negative epiglottic pressure and the rate of ventilatory drive augmentation were significantly greater, suggesting a higher arousal threshold and ventilatory responsiveness to respiratory stimuli during slow wave compared to stage 2 sleep. Post dialdowns, the likelihood of arousal was lower with less severe dialdowns and in slow wave compared to stage 2 sleep. Respiratory drive measured by epiglottic pressure progressively increased post-dialdown, but did not translate into increases in peak flow or ventilation pre-arousal and was not different between sleep stages. These data suggest that while arousal time and propensity
following respiratory challenge are altered by sleep depth, there is little evidence to support that upper airway and ventilatory compensation responses to respiratory load are fundamentally improved in slow wave compared to stage 2 sleep.

In summary, sleep stage, arousal threshold and chemical drive appear to strongly influence upper airway and ventilatory stability in OSA and are suggestive of important non-anatomical pathogenic mechanisms in OSA.
PUBLICATIONS

Submitted for publication

Published abstracts

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Rajeev Ratnavadivel

Date: Friday, 28 August 2009
ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisors. I am indebted to Professor Doug McEvoy for giving me the opportunity to work in such a prestigious unit. He provided me with a constant level of professional support and mentorship, and was always available for advice and helpful suggestions. Associate Professor Peter Catcheside has consistently provided significant hands-on technical help and has been a constant source of inspiration, optimism and friendship. Dr Carmine DePasquale provided significant help, particularly in the early years of my PhD.

The research, laboratory, medical and administrative staff of the Adelaide Institute for Sleep Health provided significant technical help, friendship and encouragement. I would particularly like to thank Samantha Windler, Kate George, Kieron Thomson, Courtney Thompson, Melissa Ryan, Jana Bradley and Denzil Paul.

I am grateful to the volunteers and patients who gave up their time in support of my studies. I would like to acknowledge the loan of the \(P_{\text{CRIT}} \) Research system by Philips-Respironics Inc and the financial support of the Lions Medical Research Foundation of Australia.

I would like to thank the other PhD students within the unit, particularly Dr Aeneas Yeo, Andrew Vakulin and Daniel Stadler for their friendship and general camaraderie.
Finally, I would like to thank my wife Brijanthi for her love and support, without which this thesis probably would not have been completed.

“Known is a drop, unknown is an ocean”

Tamil proverb - Owaya