Removal of ammonia from drinking water by biological nitrification in a fixed film reactor

Ben van den Akker
B.EnvHlth, B.Sc (Hons)

Submitted in fulfillment of the requirements for the Degree of
Doctor of Philosophy

Department of Environmental Health, School of Medicine

(14th January 2008)
Table of contents

SUMMARY ... 12
DECLARATION .. 14
ACKNOWLEDGMENTS .. 15

1 INTRODUCTION ... 17

1.1 GENERAL INTRODUCTION ... 17
1.2 CHLORINE DISINFECTION ... 18
1.3 BUARAN WATER TREATMENT PLANT, EAST JAKARTA, INDONESIA 20
 1.3.1 Background .. 20
 1.3.2 Raw water quality .. 20

1.4 PROCESS SELECTION .. 21

1.5 NITRIFYING TRICKLING FILTERS ... 23

1.6 BIOFILMS ... 29

 1.6.1 Definition ... 29
 1.6.2 Mass transport ... 29
 1.6.3 Extracellular polysaccharides .. 30

1.7 MICROBIOLOGICAL PROCESSES SPECIFIC TO NTFs .. 34

 1.7.1 Autotrophic nitrification ... 34
 1.7.2 Denitrification ... 35
 1.7.3 Carbon oxidation .. 35
 1.7.4 Nitrogen assimilation ... 36
 1.7.5 Anaerobic ammonia oxidation (anammox) .. 36

1.8 FACTORS INFLUENCING NITRIFICATION .. 37

 1.8.1 Mass transport ... 37
 1.8.2 Interspecies competition ... 38
 1.8.3 Environmental parameters ... 39
 1.8.4 Operational and design parameters ... 40
 1.8.5 In situ analysis of biofilm population structure .. 42

1.9 PROJECT AIMS .. 44

2 REVIEW OF THE RAW WATER QUALITY AT BUARAN AND IMPACT ON WATER TREATMENT 45

2.1 INTRODUCTION .. 45

2.2 METHODS ... 52

 2.2.1 Water quality data ... 52
 2.2.2 Technical visit .. 52

2.3 RESULTS .. 53

 2.3.1 Inorganic nitrogen ... 53
 2.3.2 Organic carbon .. 55
 2.3.3 C:N ratio ... 58
 2.3.4 Dissolved oxygen .. 58
 2.3.5 Turbidity and suspended solids .. 58
 2.3.6 Microbial load .. 62

2.4 DISCUSSION ... 63
3 GENERAL METHODOLOGY ..68

3.1 INTRODUCTION ..68

3.2 LARGE PILOT-SCALE NITRIFYING TRICKLING FILTER ..68
 3.2.1 NTF column..68
 3.2.2 Trickling Filter support stand ...70
 3.2.3 Media support stand and frames ...70
 3.2.4 Biofilm support media ..75
 3.2.5 Primary pump ...76
 3.2.6 PVC manifold ...78
 3.2.7 Rotating distribution arm ..81
 3.2.8 Hydraulic flow ...81
 3.2.9 Ventilation ports and effluent drains ..83
 3.2.10 Filtrate and biofilm sample sites ...83
 3.2.11 Aqueous phase sampling ...83

3.3 DOSING ..86
 3.3.1 Ammonia dosing ..86
 3.3.2 External organic carbon source dosing ...86
 3.3.3 Suspended solids dosing ..86
 3.3.4 Electrical wiring ..90
 3.3.5 Pilot plant troubleshooting ..90

3.4 SMALL PILOT-SCALE NTFs ..93

3.5 WATER ANALYSIS ..95
 3.5.1 Total alkalinity ..95
 3.5.2 Ammonia-nitrogen ..95
 3.5.3 Oxidised nitrogen (nitrite-N and nitrate-N) ...95
 3.5.4 Total organic carbon ..95
 3.5.5 Five-day soluble biological oxygen demand ...96
 3.5.6 pH ...96
 3.5.7 Total suspended solids ...96
 3.5.8 Turbidity ..96

3.6 ONLINE INSTRUMENTATION ..97
 3.6.1 Turbidity analyser ...97
 3.6.2 Dissolved Oxygen ...97
 3.6.3 Temperature ...97

3.7 BIOFILM ANALYSIS ...98
 3.7.1 Biofilm sampling and extraction for protein and carbohydrate analysis98
 3.7.2 Protein analysis ...98
 3.7.3 Carbohydrate analysis ...98
 3.7.4 Heterotrophic plate count ...99
 3.7.5 Fluorescent in situ hybridisation ...99
 3.7.6 Scanning electron microscopy ...103

3.8 HYDRAULIC TRACER ANALYSIS ...104

3.9 STATISTICAL ANALYSIS ...105

4 APPLICATION OF TRICKLING FILTERS TO REMOVE LOW CONCENTRATIONS OF AMMONIA......106
4.1 INTRODUCTION ... 106
4.2 METHODS .. 109
 4.2.1 Large pilot-scale NTF ... 109
 4.2.2 Small pilot-scale NTFs ... 109
 4.2.3 NTF start-up .. 110
 4.2.4 Ammonia loading ... 110
 4.2.5 Effect of hydraulic load on nitrification performance ... 111
 4.2.6 Effect of suspended solids on nitrification performance 112
 4.2.7 Large pilot-scale NTF—sampling and chemical analysis 112
 4.2.8 Small pilot-scale NTFs—sampling and chemical analysis 113
 4.2.9 Hydraulic tracer analysis .. 113
 4.2.10 Total protein and total carbohydrate .. 113
 4.2.11 Weighing of the support media ... 113
4.3 RESULTS ... 115
 4.3.1 Large pilot-scale NTF start-up ... 115
 4.3.2 Performance comparison of the old and newly reconstructed pilot NTFs 120
 4.3.3 Inorganic nitrogen depth profile .. 123
 4.3.4 Nitrification rate profile .. 125
 4.3.5 Nitrification rates as a function of ammonia-N surface load 128
 4.3.6 Nitrification rate as a function of hydraulic surface load 130
 4.3.7 Percentage nitrification as a function of hydraulic surface load and ammonia
 surface load ... 132
 4.3.8 Distribution of biomass through the large pilot-scale NTF 135
 4.3.9 Impact of seasonal variation on nitrification performance 137
 4.3.10 Impact of inert solids on NTF performance .. 142
 4.3.11 Hydraulic characterisation of the large pilot-scale NTF 146
4.4 DISCUSSION .. 148
5 INFLUENCE OF ORGANIC CARBON LOADING ON NITRIFYING TRICKLING FILTER PERFORMANCE 162
 5.1 INTRODUCTION ... 162
 5.2 METHODS .. 165
 5.2.1 Experimental design ... 165
 5.2.2 Large pilot-scale NTF—sampling and chemical analysis 166
 5.2.3 Small pilot-scale NTF—sampling and chemical analysis 166
 5.2.4 Organic carbon biodegradability test .. 166
 5.2.5 Pearce’s nitrification model ... 167
 5.3 RESULTS ... 169
 5.3.1 Comparing organic carbon biodegradability of Buaran raw water with selected
 carbon sources .. 169
 5.3.2 Comparison of nitrification performance between experiments 171
 5.3.3 Percentage nitrification as a function of organic load .. 173
 5.3.4 Nitrification rate as a function of organic load .. 173
 5.3.5 Nitrification as a function of C:N ratio ... 174
 5.3.6 Effect of carbon loading and operation time on nitrification: low ammonia-N
 loaded NTF ... 178
6 EFFECT OF CARBON TO NITROGEN RATIO ON BIOFILM PROTEIN AND CARBOHYDRATE COMPOSITION..223

6.1 INTRODUCTION ...223
6.2 METHODS...225
6.2.1 Experimental design ...225
6.2.2 Total Protein and total Carbohydrate ..225
6.2.3 Heterotrophic plate counts ..226
6.2.4 Hydraulic tracer analysis ..226
6.3 RESULTS...228
6.3.1 Biofilm carbohydrate composition ...228
6.3.2 Biofilm protein composition ..234
6.3.3 Protein:carbohydrate ratio ..236
6.3.4 Biofilm heterotrophic composition ..237
6.3.5 Hydraulic characterisation ..239
6.4 DISCUSSION..242

7 MICROBIAL ECOLOGY OF A NITRIFYING TRICKLING FILTER TREATING POTABLE WATER ..250

7.1 INTRODUCTION ..250
7.2 METHODS...253
7.2.1 Experimental design ...253
7.2.2 Biofilm sampling ..253
7.2.3 FISH and SEM ..253
7.2.4 Large pilot-scale NTF—sampling and chemical analysis253
7.2.5 Small pilot-scale NTFs—sampling and chemical analysis254
7.3 RESULTS..256
7.3.1 Nitrification performance ..256
7.3.2 Distribution of AOB and NOB during low organic carbon loads: Experiment A259
7.3.3 Vertical distribution of AOB, NOB and heterotrophs during high organic carbon loads 259
7.3.4 Experiment I: comparing the in situ structure of organic fertiliser-fed and sucrose-fed biofilms ..279
7.3.5 Biofilm thickness ...281
7.4 DISCUSSION..283

8 GENERAL DISCUSSION..288

REFERENCES...298

APPENDIX ..313
List of figures

Chapter 1
Figure 1.1. Theoretical breakpoint curve. ... 19
Figure 1.2. Illustration of a trickling filter. ... 25
Figure 1.3. Schematic representation of a biofilm cross-section. 33

Chapter 2
Figure 2.1. Summary of schematic water treatment process at Buaran WTP. 47
Figure 2.2. General layout of the Citarum and Ciliwung catchments and location of pollution discharge points. ... 48
Figure 2.3. Seasonal variation in raw water ammonia-N concentrations at Buaran WTP during 2001. ... 54
Figure 2.4. Seasonal variation in raw water organic matter and COD concentrations at Buaran WTP during 1999. ... 56
Figure 2.5. Seasonal variation in raw water BOD$_5$ concentrations at Buaran WTP during 2004. ... 57
Figure 2.6. One through to five day BOD and sBOD test. ... 57
Figure 2.7. Seasonal variation in raw water organic matter and turbidity concentrations at Buaran WTP during 2003. ... 59
Figure 2.8. Relationship between raw water turbidity and SS during 2004. 60
Figure 2.9. Profile of SS and turbidity, measured along the Tarum canal during September 2000, and corresponding photographs taken on the technical visit during March 2004. ... 61
Figure 2.10. Seasonal variation in raw water total coliforms at Buaran WTP during 2003. ... 62

Chapter 3
Figure 3.1. Schematic representation of the small pilot-scale NTFs. 94

Chapter 4
Figure 4.1. Progression of nitrification during start-up after supplementing the influent with low concentrations of ammonia on day 0. ... 117
Figure 4.2. Concentration profiles of inorganic nitrogen species measured throughout the depth of the large pilot-scale NTF during start-up. ... 118
Figure 4.3. Comparison of nitrate-N generation rates between the old large pilot-scale NTF and the newly reconstructed large pilot-scale NTF, for various ammonia-N concentration loads of: (a) 0.5 mg/L; (b) 2.0 mg/L; and (d) 5.0 mg/L. ... 122
Figure 4.4. Steady-state concentration profiles of inorganic nitrogen species measured within the large pilot-scale NTF for various ammonia-N concentration loads of: (a) 0.5 mg/L; (b) 1.0 mg/L; (c) 2.0 mg/L; (d) 3.0 mg/L; and (e) 5.0 mg/L. ... 124
Figure 4.5. Nitrification rates measured throughout the depth of the large pilot-scale NTF, represented as: mg NH$_4$-N per unit of surface area (m2); and per kg of biomass; for various influent ammonia-N concentrations. ... 126
Figure 4.6. Nitrification rates as a function of influent ammonia-N concentration for four filter bed depths when operated under a constant hydraulic surface loading of 173 L m$^{-2}$ d$^{-1}$. ... 127
Figure 4.7. Relationship between ammonia-N surface load and apparent nitrification rate for: large pilot-scale NTF; and small pilot-scale NTF. ... 129
Figure 4.8. Relationship between ammonia-N surface load and apparent nitrification rate when operated under various hydraulic surface loads, at relatively constant ammonia-N concentration loads of 4.1 ± 2.2 mg/L. ... 131
Figure 4.9. Percentage nitrification as a function of hydraulic load for various ammonia concentration loads. ... 133
Chapter 5

Figure 5.1. Comparison of BOD₅ to BOD₅ of selected carbon sources and of Buaran raw water...170

Figure 5.2. Effect of influent sBOD₅ concentration and external carbon source on NTF performance..172

Figure 5.3. Steady-state relationship between percentage nitrification and organic load, obtained from experimental data where ammonia-N was loaded between 94 ± 10 to 815 ± 130 mg NH₄-N m⁻² d⁻¹. ..175

Figure 5.4. Apparent nitrification rate as a function sBOD₅ surface load, observed under: (i) low ammonia-N loads of 94 ± 10 mg NH₄-N m⁻² d⁻¹; and (ii) high ammonia-N loads 815 ± 130 mg NH₄-N m⁻² d⁻¹. ..176

Figure 5.5. Nitrification performance of the NTF, as a function of time, following an increase in influent sBOD₅ concentration from 1.3 to 5.8 ± 2.7 mg/L (on day 0). ..179

Figure 5.6. Concentration profiles of inorganic nitrogen species measured throughout the depth of the NTF. ..184

Figure 5.7. Nitrogen mass-balance showing effluent nitrogen species composition as percentage of total inorganic nitrogen..186

Figure 5.8. Comparison of nitrification rates measured through the depth of the large pilot-scale NTF during operational periods of high and low influent sBOD₅ concentrations. Low influent ammonia-N concentrations fixed at 0.5 ± 0.2 mg NH₄-N m⁻² d⁻¹. ..189

Figure 5.9. NTF nitrification performance as a function of time, once influent sBOD₅ concentration was increased on day 1 by the addition of sucrose..192

Figure 5.10. Concentration profiles of inorganic nitrogen species measured throughout the depth of the NTF ..196

Figure 5.11. Inorganic nitrogen mass-balance showing effluent nitrogen species composition as percentage of total inorganic nitrogen..198

Figure 5.12. Comparison of nitrification rates measured down the large pilot-scale NTF during operational periods of high and low influent sBOD₅ concentrations. High influent ammonia-N concentrations fixed at 5.0 ± 0.7 mg NH₄-N m⁻² d⁻¹. ..200

Figure 5.13. Relationship between sBOD₅ surface load and removal rate..202

Figure 5.14. Relationship between TOC surface load and removal rate..202

Figure 5.15. Concentration profiles of TOC and sBOD₅ measured throughout the NTF ..203

Figure 5.16. Steady-state relationship between influent sBOD₅ concentration and effluent DO..205

Figure 5.17. Steady-state relationship between effluent DO, % nitrification and carbon removal..206
Figure 5.18. Observed and predicted effluent ammonia-N concentration as a function of organic surface load. ... 209

Chapter 6
Figure 6.1. NTF depth profile of biofilm carbohydrate (µg/cm²) and corresponding influent ammonia-N and sBODs concentrations. ... 230
Figure 6.2. Relationship between biofilm carbohydrate (µg/cm²) and apparent nitrification rate in response to an increase in organic carbon loading. ... 233
Figure 6.3. NTF depth profile of biofilm protein (µg/cm²) for each experiment and corresponding influent ammonia and sBODs concentrations. ... 235
Figure 6.4. Large pilot-scale NTF: depth profile of biofilm heterotrophic concentration (CFU/cm²) for each experiment and the corresponding sucrose induced influent sBODs concentrations.. 238
Figure 6.5. RTD curves after a trace pulse injection of rhodamine WT and corresponding table of biomass concentrations represented as total carbohydrate and total protein. .. 240
Figure 6.6. Steady-state relationship between HRT and NTF nutrient surface load measured as the sum of ammonia-N + sBODs mg m⁻² d⁻¹. .. 241

Chapter 7
Figure 7.1. Concentration profile of: ammonia-N; nitrite-N; and nitrate-N observed through the depth of the large pilot-scale NTF during time of biofilm harvest... 257
Figure 7.2. Mean percentage nitrification values measured for all experiments. .. 258
Figure 7.3. Profile of biofilm thickness throughout the depths of the trickling filter during high sBOD₅ loads (8.8 mg/L) at NH₄-N load of 4.7 mg/L (Experiment F). ... 282

Chapter 8
Figure 8.1. Comparison of nitrification rate profile obtained in this study when operated under low ammonia-N concentrations (<5.0 mg NH₄-N/L), to that obtained from wastewater investigations by Parker et al. (1989), when operated under higher influent ammonia concentrations (>5.0 NH₄-N/L). .. 291
Figure 8.2. Comparison of ammonia-N depth profiles obtained from this study to that obtained from wastewater investigations by Pearce (2004), when operated under high organic loads of 0.32 and 0.29 kg BOD₅ m⁻³ d⁻¹ respectively... 293

List of tables

Chapter 1
Table 1.1. Typical trickling filter classifications and corresponding design characteristics: Comparison between conventional wastewater filters with the potable NTF designed for this study. .. 26
Table 1.2. Optimum values of environmental factors for nitrification... 40

Chapter 2
Table 2.1. Pearson r correlation coefficient for raw water data collected during the year 2003 at Buaran water treatment plant... 54
Table 2.2. Summary of organic carbon concentrations represented as BODs, COD and organic matter for the years 1999 – 2004. .. 56
Chapter 3
Table 3.1. Hybridisation solutions used for FISH... 101
Table 3.2. Wash buffers used for FISH.. 101
Table 3.3. 16S rRNA-targeted oligonucleotide probes used in this study.......................... 102

Chapter 4
Table 4.1. Summary of pilot NTFs used in the study and their operating conditions........... 111
Table 4.2. Summary of the physicochemical analysis of the large pilot-scale NTFs Influent and effluent.. ...139

Chapter 5
Table 5.1. Experimental conditions used to determine the effect of carbon loadings on the performance of the nitrifying trickling filters; influent ammonia-N and sBOD\textsubscript{5} concentrations and corresponding C/N ratio and loading rates. .. 168
Table 5.2. Spearman’s correlation coefficient highlighting relationships between NTF performance and physiochemical water quality parameters..................... 177

Chapter 6
Table 6.1. Influent ammonia-N and sBOD\textsubscript{5} concentrations and corresponding loading rates that the NTF was operated under.. ..227
Table 6.2. Spearman’s correlation coefficients highlighting relationships between nitrification, organic (sBOD\textsubscript{5}) loading and C:N ratio with biofilm carbohydrate, protein and heterotrophic composition........................... 231

Chapter 7
Table 7.1. Trickling filter influent ammonia-N and sBOD\textsubscript{5} concentrations and corresponding loadings rates.. ...255

List of plates

Chapter 1
Plate 1.1. Scanning electron micrographs showing the diversity of microorganisms found in nitrifying biofilms... 32

Chapter 2
Plate 2.1. Illustration of bank side residents located within the Ciliwung and Citarum basin, who have direct water use for life activities.. 49
Plate 2.2. Floating toilet: Discharge of excreta into the water supply..................................... 49
Plate 2.3. Pre-chlorination dosing point at Buaran WTP.. 51

Chapter 3
Plate 3.1. Large pilot-scale NTF, located at Hope Valley WTP, Adelaide............................. 69
Plate 3.2. NTF support stand... 71
Plate 3.3. Media support stand... 72
Plate 3.4. External media support frameg.. 73
Plate 3.5. Birds eye view: 1 of 2 internal media support frames.. 74
Chapter 4
Plate 4.1. In situ examination of biofilm harvested at 0.3 m during start-up using FISH and SEM. 119
Plate 4.2. SEM depicting the in situ ultra structure of the NTF biofilm during high SS loads. 145

Chapter 5
Plate 5.1. Impact of high carbon loads on NTF support media. 187

Chapter 7
Plate 7.1. Fluorescent micrographs showing in situ structure of the nitrifying biofilm sampled from the surface (0 m) of the trickling filter, at low organic carbon loads (1.3 ± 0.5 mg sBOD₅/L) during Experiment A. 261
Plate 7.2. In situ structure of the nitrifying biofilm sampled from trickling filter bed depth of 0.3 meters during Experiment A, at low organic loads (1.3 ± 0.5 mg sBOD₅/L). 262
Plate 7.3. In situ structure of the biofilm at various filter bed depths during Experiment A, at low organic loads (1.3 ± 0.5 mg sBOD₅/L). 263
Plate 7.4. In situ structure of the biofilm at various filter bed depths during: Experiment C– high sBOD₅ (5.4 ± 0.15 mg/L) loading using sucrose. 268
Plate 7.5. In situ structure of the biofilm sampled from the top (0.3 m) of the trickling filter during Experiment F – high sBOD₅ (8.8 ± 2.9 mg/L) loading using sucrose. 271
Plate 7.6. In situ structure of the biofilm sampled from the middle (1.5 m) of the trickling filter during Experiment F– high sBOD₅ (8.8 ± 2.9 mg/L) loading using sucrose. 273
Plate 7.7. In situ structure of the biofilm sampled from the bottom (2.7 m) of the trickling filter obtained during Experiment F – high sBOD₅ (8.8 ± 2.9 mg/L) loading using sucrose. 275
Plate 7.8. In situ structure of the biofilm sampled from the top of the trickling filter (0.3 m) during Experiment G – Fed intermittent organic spikes (9.4 ± 0.9 mg sBOD₅/L) using sucrose. 278
Plate 7.9. In situ structure of the biofilm samples from the trickling filter bed depth of 0.3 m during Experiment F (fed sucrose equivalent to 8.8 ± 2.9 mg sBOD₅/L) and I fed organic fertilizer equivalent to (11.5 ± 3.4 mg sBOD₅/L). 280
SUMMARY

The absence of water catchment protection often results in contamination of drinking water supplies. Waters in South East Asia have been exploited to support extensive agriculture, industry, power generation, public water supply, fisheries and recreation use. Ammonia has been identified as a significant contaminant of drinking water because of its ability to affect the disinfection efficiency of chlorine. The interference of ammonia with chlorination is a prevalent and expensive problem faced by many water treatment plants (WTPs) located throughout South East Asia. The conventional approach for ammonia removal was to pre-chlorinate using high concentrations of chlorine, which has a number of disadvantages including the formation of disinfection by-products and high chlorine consumption.

This thesis investigated the application of high rate nitrifying trickling filters (NTFs) as a means of ammonia removal from a polluted lowland water source as an alternative to pre-chlorination. NTFs are widely used for the biological remediation of ammonia rich wastewater, however their performance when required to operate under low ammonia concentrations for potable water applications was unknown.

A NTF pilot facility consisting of one large-scale, and three small-scale NTFs were constructed at Hope Valley WTP in South Australia. The NTFs were operated to simulate the raw water quality of a polluted catchment identified in Indonesia (Buaran WTP), including variations in ammonia, biological oxygen demand (BOD$_5$), and turbidity. Results confirmed that plastic-packed NTFs were able to operate equally successfully under low ammonia-N concentrations, some 10- to 50-fold lower that that of conventional wastewater applications, where complete conversion of ammonia to nitrate was consistently observed under these markedly reduced loadings. Results also showed that when operated under mass loads equivalent to typical ammonia loading criteria for wastewater NTFs, by increasing hydraulic flow, comparable apparent nitrification rates were achieved. These results confirmed that mass transport limitations posed by low ammonia-N concentrations on overall filter performance were insignificant.

This thesis also investigated the impact of organic carbon quantity and biodegradability on the nitrification behaviour of the pilot NTF. Results demonstrated that organic carbon loading, rather than the C:N ratio, was an important regulator of filter nitrification capacity, where a linear decline in nitrification performance correlated well with sucrose and methanol augmented
carbon loads. Extensive monitoring of inorganic nitrogen species down the NTF, to profile nitrification behaviour, showed sucrose-induced carbon loads greater than 870 mg sBOD$_5$ m$^{-2}$ d$^{-1}$ severely suppressed nitrification throughout the entire filter bed. This study also confirmed that critical carbon loads for nitrification varied among carbon sources. In contrast to sucrose, when a more native-like carbon source was dosed (organic fertiliser), no significant decline in nitrification capacity was observed. This could be attributed to differences in carbon biodegradability.

This research has provided new insights into the microbial ecology of a potable water NTF. The combination of fluorescent in situ hybridisation (FISH) and scanning electron microscopy (SEM) for in situ analysis of biofilms was successful in identifying the spatial distribution of ammonia oxidising bacteria (AOB), nitrite oxidising bacteria (NOB) and heterotrophs. When the NTF was operated under low organic loads, clusters of AOB and NOB were abundant, and were located in close proximity to each other. Uniquely, the study identified not only *Nitrospira* spp but also the less common *Nitrobacter* spp within the NTF biofilm. Biofilm analysis showed that the type of carbon source also strongly influenced the biofilms characteristics in terms of biomass ecology, morphology, and polysaccharide composition, which was correlated with NTF performance. Results showed that an increase in sBOD$_5$ via the addition of sucrose promoted the rapid growth of filamentous heterotrophic bacteria and production of large amounts of polysaccharide. Stratification of nitrifiers and heterotrophs, and high biofilm polysaccharide concentrations were observed at all filter bed depths, which coincided with the impediment of nitrification throughout the entire filter column. High biofilm polysaccharide concentrations also coincided with a significant increase (40 %) in filter hydraulic retention time, as determined by hydraulic tracer experiments. In contrast to sucrose-fed biofilms, organic fertiliser-fed biofilms had a more uniform and dense ultra-structure dominated by many rod shaped bacteria, and was significantly lower in polysaccharide composition. This observation was coupled with superior nitrification performance.

This study confirmed that a well functioning NTF is a viable, low cost alternative for ammonia removal from source water abstracted from poorly protected catchments found in many developing countries. Pre-treatment using NTFs has the potential to reduce the chlorine dose required for pre-chlorination. Thereby improving water quality by minimising the formation of disinfection by-products, and improving the control of chlorination. NTFs could also find ready application in other situations where ammonia interferes with chlorine disinfection.
DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for any degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Ben van den Akker
14/01/2008
ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisors Howard Fallowfield, Nancy Cromar and Mike Holmes for their vast knowledge, support, guidance and enthusiasm.

I would like to thank all United Water staff form Hope Valley Water Treatment Plant, and their Research and Development group for their support and hospitality.

I would also like to thank all those people who have provided significant technical expertise and project support including (in no particular order) Pete Pearce, Alana Hansen, Kerry Gascoigne, Michelle Lewis, Flinders Biomedical Engineering, Richard Evans, Guy Abell, Michael Short, Trish Amee and Cheryl Caldwell. Each of you have provided something that was essential to this thesis and as such I am extremely grateful.

Thank you to all staff and students from the department of Environmental Health, who have provided feedback and support over the course of my studies there, and who have most importantly provided support, friendship and encouragement. A special thanks to Michael, Akio, Sharyn, Emily, Richard, Lewis, Katarina and Linda for your friendship and fun times in the lab.

I am grateful to my close friends Sam, Akio, Michael, Vince, and Pete for their huge support, words of encouragement and motivation. Sam, thanks for all the coffees and words of inspiration.

I would like to extend a very special thanks to Kate Biedrzycki and my family for their huge support, understanding, encouragement and for always been there during the good and bad times.

This research project was proudly funded by Thames Water and supported by United Water International as part of their commitment to innovation and responsible water management.
Abbreviations

Ammonia-N- ammonia-nitrogen
AOB- ammonia oxidising bacteria
BAF- biological aerated filter
BNR- biological nutrient removal
BOD₅- total 5 day biological oxygen demand
CFU- colony forming units
COD- chemical oxygen demand
DAPI- 4',6-diamidino-2-phenylindole
DO- dissolved oxygen
DOC- dissolved organic carbon
EDTA- ethylenediamine tetra-acetate dihydrate
EPS- extracellular polysaccharide
FISH- fluorescent in situ hybridisation
HPC- heterotrophic plate count
HRT- hydraulic retention time
Nitrate-N- nitrate-nitrogen
Nitrite-N- nitrite-nitrogen
NOB- nitrite oxidising bacteria
NOx- oxidized nitrogen (nitrite-N + nitrate-N)
NTF- nitrifying trickling filter
NTU- Nephelometric turbidity units
PAC- powdered activated carbon
PBS- phosphate-buffered saline
PVC- polyvinylchloride
RFL- relative fluorescence
RNA- ribonucleic acid
rRNA- ribosomal ribonucleic acid
rₚ- Spearman’s correlation coefficient
RTD- residence distribution curve
sBOD₅- soluble 5 day biological oxygen demand
SD- standard deviation
SEM- scanning electron microscopy or scanning electron micrograph
SS- suspended solids
TOC- total organic carbon
WTP- water treatment plant
WWTP- wastewater treatment plant