Simplified Diagnostic and Management Strategies for the Diagnosis and Delivery of Health Care to those with Obstructive Sleep Apnea

by

Nicholas Alexander Antic
MBBS (University of Adelaide 1993)
FRACP (Royal Australasian College of Physicians 2001)

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

School of Medicine
Flinders University of South Australia
5042

Adelaide Institute for Sleep Health
Repatriation General Hospital
South Australia
5041

March 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>V</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>VI</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>VII</td>
</tr>
<tr>
<td>PUBLICATIONS ARISING FROM THIS THESIS</td>
<td>X</td>
</tr>
<tr>
<td>AWARDS</td>
<td>XII</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>XIII</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>XIV</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>XVI</td>
</tr>
<tr>
<td>CHAPTER 1.0</td>
<td>1</td>
</tr>
<tr>
<td>1.1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 OSA, prevalence and significance</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Economic cost of OSA</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 CPAP is a highly cost effective therapy for moderate-severe OSA</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 The demand and supply for OSA services in Australia</td>
<td>6</td>
</tr>
<tr>
<td>1.1.5 Epidemiology of OSA around the world</td>
<td>7</td>
</tr>
<tr>
<td>1.1.6 World trends in OSA services</td>
<td>9</td>
</tr>
<tr>
<td>1.1.7 The historical development of clinical polysomnography</td>
<td>10</td>
</tr>
<tr>
<td>1.1.8 Simplified diagnostic strategies for OSA</td>
<td>11</td>
</tr>
<tr>
<td>1.1.8.1 Questionnaires</td>
<td>13</td>
</tr>
<tr>
<td>1.1.8.2 Home studies to investigate sleep apnea</td>
<td>15</td>
</tr>
<tr>
<td>1.1.8.3 Manual versus automated scoring of sleep studies</td>
<td>18</td>
</tr>
<tr>
<td>1.1.8.4 Oximetry compared with other ambulatory methods of diagnosis</td>
<td>19</td>
</tr>
<tr>
<td>1.1.9 Establishing patients with OSA on CPAP</td>
<td>20</td>
</tr>
<tr>
<td>1.1.9.1 Split studies</td>
<td>22</td>
</tr>
<tr>
<td>1.1.9.2 Home Auto-adjusting CPAP to establish fixed therapeutic CPAP level</td>
<td>24</td>
</tr>
<tr>
<td>1.1.9.3 Using a clinical algorithm to set the fixed CPAP level</td>
<td>26</td>
</tr>
<tr>
<td>1.1.9.4 Using auto-adjusting CPAP instead of fixed CPAP for long-term care</td>
<td>29</td>
</tr>
<tr>
<td>1.1.9.5 Nurse led models of care</td>
<td>31</td>
</tr>
<tr>
<td>1.1.9.6 Medical manpower issues, exploring clinical care by specialist nurses</td>
<td>33</td>
</tr>
<tr>
<td>1.1.9.7 Testing simplified models of care for OSA</td>
<td>35</td>
</tr>
<tr>
<td>1.1.9.8 Summary of evidence on techniques used to simply the management of OSA</td>
<td>37</td>
</tr>
<tr>
<td>1.2 AIMS OF THESIS</td>
<td>38</td>
</tr>
<tr>
<td>CHAPTER 2.0</td>
<td>43</td>
</tr>
<tr>
<td>2.1 INTRODUCTION</td>
<td>43</td>
</tr>
<tr>
<td>2.2 METHODS</td>
<td>46</td>
</tr>
<tr>
<td>2.2.1 Patient selection</td>
<td>46</td>
</tr>
<tr>
<td>2.2.2 Portable oximetry</td>
<td>46</td>
</tr>
<tr>
<td>2.2.3 Study design</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1. Bland-Altman plot Laboratory AHI vs. Laboratory >2% oximetry dip-rate..54
Figure 2.2. Receiver Operator Characteristic Curves for >2% laboratory dip-rate where OSA is defined as AHI ≥ 15 and ≥3056
Figure 2.3. Bland-Altman plot Home dip-rate vs. Lab dip-rate........63
Figure 3.1. Design of Clinical Trial ..83
Figure 3.2. Study Flow Diagram...84
Figure 4.1. CPAP adherence Model A and Model B112
Figure 4.2. CPAP adherence (whole group)113
Figures 4.3. Pre-post treatment change in ESS as a function of compliance category ...115
Figure 4.4. Pre and post treatment ESS as a function of compliance category ...116
Figure 4.5. Total cumulative proportion of patients achieving normal ESS and FOSQ values with increasing compliance derived from data within each compliance category shown in Table 4.3 (above)118
Figure 4.6. Average MWT sleep latency following CPAP treatment as a function of compliance category120
Figure 4.7. Pre-post treatment total FOSQ scores as a function of compliance category ...122
Figure 4.8. SF36 vitality subscale change across different CPAP adherence levels ...124
Figure 4.9. SF36 bodily pain subscale change across different CPAP adherence levels ...125
Figure 4.10. Pre- and Post-CPAP treatment Executive maze total errors (top) and reaction time (bottom) as a function of adherence category ..128
LIST OF TABLES

Table 2.1. Patient anthropometric characteristics and PSG data...........52
Table 2.2. Areas under the ROC curves ±SEM for oximetry using three
different desaturation threshold values and two different OSA
diagnostic cut points for AHI...57
Table 2.3. Ruling in and ruling out OSA using a single > 2% desaturation
dip rate cut-point ..59
Table 2.4. Ruling in and Ruling out OSA using two different > 2%
desaturation dip rate cut-points..61
Table 3.1. Group characteristics at baseline...86
Table 3.2. Outcomes after 3 months..89
Table 3.3. Patient consultations, medical and nursing, and patient
preference data...91
Table 4.1. Patient Characteristics..110
Table 4.2. Percentage of patients with normal values pre- and post
treatment and according to CPAP compliance.................................117
Table 4.3. Selected Neurocognitive parameters before and after CPAP,
and compared to a control group..127
ABSTRACT

Obstructive sleep apnea (OSA) is a prevalent disease. Often resources to provide care for OSA are inadequate, leading to long patient waiting times. Simpler validated methods of care are needed.

In the first study in Chapter 2, the utility of a new high-sampling rate oximeter to diagnose OSA was explored. The home oximetry data collection was robust, with few failures and the data allowed the “rule in” or “rule out” of moderate-severe OSA with high degree of certainty. It is concluded that home oximetry could replace polysomnography (PSG) as a diagnostic test in a significant proportion of patients, thus allowing limited resources available for the care of those with OSA to be re-directed e.g. towards providing therapy.

In Chapter 3, the diagnostic information from the oximeter was used to underpin a study designed to demonstrate that a nurse-led model of care could produce health outcomes in moderate-severe OSA not inferior to physician-led care.

A randomised controlled multi-centre non-inferiority clinical trial was performed. 1,427 patients referred to 3 sleep medical centres with possible OSA were assessed. 195 patients were randomised to 2 models of care. Model A, a simplified model, involved home oximetry to diagnose moderate-severe OSA, auto-titrating constant positive airway pressure (APAP) to set a therapeutic constant positive airway pressure (CPAP), with all care supervised by an experienced nurse. Model B involved 2 laboratory PSG’s, to diagnose OSA then titrate CPAP, supervised by a sleep physician. The
primary endpoint was change in Epworth Sleepiness Score (ESS) measured before and after 3 months of CPAP. A range of other outcome measures were collected.

The change in ESS for nurse-led management (Model A) was not inferior to the physician-led service (Model B) since the lower limit of the two-sided 95% CI did not include -2, the margin of equivalence (difference 0.13, 95% CI -1.52 to -1.25). 11 patients in Model A and 10 in Model B were lost to follow up during the trial. There were no significant differences between Model A and Model B after 3 months of CPAP in any of the other outcome measures, including CPAP adherence at 3 months.

It is concluded that a simplified nurse-led model of care can produce non-inferior results to physician-directed care in the management of moderate-severe OSA.

In Chapter 4 the efficacy of CPAP in normalising or improving subjective and objective sleepiness, quality of life and selected neurocognitive measures was explored. It was shown that only a proportion of patients (60% on ESS, 35% on FOSQ) normalised their scores after 3 months of CPAP therapy. This is important information. As new health care delivery strategies evolve as a result of the data presented in Chapter 3 and elsewhere, it will be crucially important to train new health care professionals in the complexities of OSA management, such that they are aware that the symptoms of patients presenting for OSA investigations can have multiple aetiologies, and may not always resolve by simply applying CPAP.
The data presented in this thesis add to the evidence base in treatment of moderate-severe OSA and will help further evolve health care delivery for this important disease.
PUBLICATIONS ARISING FROM THIS THESIS

Publications (published Conference Proceedings) arising from this thesis

AWARDS

2003 Finalist Young Investigator Award Australasian Sleep Association.

2004 Finalist Ann Woolcock Young Investigator Award Thoracic Society of Australia and New Zealand.

2005 Nominated as Thoracic Society of Australia and New Zealand Young Investigator Representative to Japan Respiratory Society Annual Scientific Meeting.
DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material published or written by another person except where due reference is made in the text.

[Signature]

March 31, 2008
ACKNOWLEDGMENTS

There are many people who have supported me through this thesis who I would like to thank.

Firstly the teams at Newcastle and Alfred Sleep Disorders Unit led by Michael Hensley and Matthew Naughton respectively.

Many Adelaide Institute for Sleep Health staff have supported this research. Special thanks to Catherine Hansen, Rachel McDonald, Paul Molyneux, Amanda Adams and the administrative staff. Special thanks to Sharn Rowland and Samantha Windler who were both integral to the data collection of the RCT and also highly professional and a pleasure to work with. Thanks also to our lab manager Jeremy Mercer, nothing is ever too hard for the team at AISH.

Thanks to Jana Bradley for her expert formatting and proof reading help.

Special thanks to my supervisors. Dr Peter Catcheside is as capable a man as I have ever met, and his help has been priceless. Everybody at the Adelaide Institute for Sleep Health who works with him are amazed by his skills. I am no exception.
Professor Doug McEvoy is an inspiration to us all. He has been a superb mentor for me and given me so many opportunities. I have learnt a huge amount from him. I hope I can repay the faith he has in me one day.

My parents Ral and Vicki and my brother Alex have been unwavering in their support. I've been so fortunate to be given all the chances in life they've given me. My father has set such a high standard through his working life and given me a clear understanding of the standards I need to set for myself in my career.

Finally my wife Corinne who has given me so much over the years. I'm so fortunate to have met her. My children Holly and Lachlan are my pride and joy, I love them more than I could have imagined.

Nick Antic 31/03/08
GLOSSARY

+LR - positive likelihood ratio

AASM - American Academy of Sleep Medicine

AHI - Apnea-hypopnea index

APAP - autotitrating CPAP

CPAP - continuous positive airway pressure

EDS - excessive daytime sleepiness

EEG - electroencephalogram

EMG - electromyogram

EOG - electrooculogram

ESS - Epworth Sleepiness Scale

FOSQ - Functional Outcomes of Sleep Questionnaire

-LR - negative likelihood ratio

MAP - multivariate apnea index

MAS - mandibular advancement splint

MVA - Motor vehicle accident

MWT - Maintenance of Wakefulness Test

NPV - Negative predictive value

ODI - oxygen desaturation index

OSA - Obstructive sleep apnea

PPV - positive predictive value

PSG - polysomnogram

QALY - quality adjusted life years

SaO2 - arterial oxygen saturation

SF-36 - Short Form 36 (SF-36).