Pre-Clinical Multi-Modal Imaging for Assessment of Pulmonary Structure, Function and Pathology

Eman Namati
Pre-Clinical Multi-Modal Imaging for Assessment of Pulmonary Structure, Function and Pathology

by

Eman Namati

Thesis submitted for the degree of

Doctor of Philosophy

in

Biomedical Engineering

Flinders University, Adelaide, Australia

2008
Research Supervisor:
Professor Geoffrey McLennan, M.D., Ph.D.
University of Iowa, Iowa City, USA

Academic Supervisor:
Professor Murk Bottema, Ph.D.
Flinders University, Adelaide, Australia

The research described in this thesis was conducted at the University of Iowa under the Translational Lung Imaging Research Program (TLIRP) and the Iowa/South Australia Transnational Alliance (ISATNA).
Contents

Abstract .. ix
Declaration ... xi
Acknowledgments ... xii
Publications ... xiii
List of Figures ... xviii
List of Tables .. xxi
List of Symbols and Abbreviations .. xxxii

Chapter 1. Motivation, Significance and Innovation ... 1

1.1 Introduction ... 1

1.2 Thesis Overview ... 2
 1.2.1 Chapter 2: Background ... 3
 1.2.2 Chapter 3: 3D Lung Pathology Imaging ... 3
 1.2.3 Chapter 4: Micro Computed Tomography Lung Imaging ... 4
 1.2.4 Chapter 5: Laser Scanning Confocal Microscopy Lung Imaging 4
 1.2.5 Chapter 6: Longitudinal Multi-Modal Assessment of Lung Cancer 5

1.3 Conclusion ... 6

1.4 Statement of Original Contributions ... 7

Chapter 2. Background .. 10

2.1 Lung Structure and Function ... 10
 2.1.1 Introduction ... 10
 2.1.2 Ventilation ... 11
 2.1.3 Perfusion ... 15
 2.1.4 Defense Mechanism ... 16
 2.1.5 Conclusion .. 16

2.2 Microscopic Pathology Imaging .. 17
 2.2.1 Introduction ... 17
 2.2.2 Pulmonary Histopathology ... 17
 2.2.3 Conclusion .. 19

2.3 Micro-CT Imaging .. 20
2.3.1 Introduction

2.3.2 X-ray Imaging

2.3.3 Image Reconstruction

2.3.4 Micro Computed Tomography

2.3.5 Conclusions

2.4 Laser Scanning Confocal Microscopy

2.4.1 Introduction

2.4.2 Confocal Microscopy

2.4.3 Catheter-Based Confocal Microscopy

2.4.4 Conclusions

2.5 Mouse Models of Lung Cancer

2.5.1 Introduction

2.5.2 Spontaneous and Carcinogenic Models

2.5.3 Genetically Manipulated Models

2.5.4 Conclusions

Chapter 3. 3D Lung Pathology Imaging

3.1 Introduction

3.2 Methods

3.2.1 Microtome Development

3.2.2 Microtome Motorization

3.2.3 Vibrating Blade Microtome Development

3.2.4 Photo Lock

3.2.5 Imaging System

3.2.6 Automation Software

3.2.7 Lung Tissue Preparation

3.2.8 Mouse Lung Agarose Embedding

3.2.9 Solid Tissue Preparation

3.2.10 Standard Histology and Immunohistochemical Staining

3.2.11 Image Acquisition

3.3 Results

3.3.1 Fixed Sheep Lung Specimens
3.3.2 Fixed Mouse Lung Specimens ... 79
3.4 Discussion ... 83
3.5 Conclusion ... 85

Chapter 4. Micro-CT Lung Imaging ... 87

4.1 Introduction .. 87
4.2 Micro-CT Artifact Reduction and Image Processing 89
 4.2.1 Introduction .. 89
 4.2.2 Methods and Materials ... 90
 4.2.3 Results .. 100
 4.2.4 Discussion .. 105
 4.2.5 Conclusion ... 107
4.3 In Vivo Lung Imaging .. 108
 4.3.1 Introduction .. 108
 4.3.2 Methods and Materials ... 109
 4.3.3 Results .. 117
 4.3.4 Discussion .. 126
 4.3.5 Conclusions ... 127

Chapter 5. LSCM Lung Imaging ... 130

5.1 Introduction .. 130
5.2 Ex Vivo Lung Imaging .. 132
 5.2.1 Introduction ... 132
 5.2.2 Methods and Materials .. 134
 5.2.3 Results .. 138
 5.2.4 Discussion .. 143
 5.2.5 Conclusion ... 149
5.3 In Vivo Lung Imaging .. 150
 5.3.1 Introduction ... 150
 5.3.2 Methods and Materials .. 151
 5.3.3 Results .. 157
 5.3.4 Discussion .. 160
 5.3.5 Conclusions ... 161
Chapter 6. Longitudinal Multi-Modal Assessment of Lung Cancer 164

6.1 Introduction .. 164
6.2 Material and Methods .. 166
 6.2.1 Micro-CT Imaging Heating Chamber ... 166
 6.2.2 Flexible Miniature Mouse Bronchoscope ... 167
 6.2.3 Portable Micro-Controller Ventilator .. 169
 6.2.4 Animal Preparation ... 170
 6.2.5 Study Timeline ... 174
 6.2.6 Multi-Modal Image Acquisition ... 175
 6.2.7 Image Processing .. 185
 6.2.8 Image Analysis .. 186
 6.2.9 Multi-Modal Registration .. 190
6.3 Results ... 193
 6.3.1 Micro-CT Imaging ... 193
 6.3.2 PET and MRI Imaging ... 207
 6.3.3 CBCM and LSCM Imaging .. 209
 6.3.4 LIMA Imaging ... 215
 6.3.5 Histology ... 220
6.4 Discussion .. 223
 6.4.1 Image Acquisition ... 223
 6.4.2 Micro-CT Tumor Analysis ... 225
 6.4.3 Micro-PET & MRI .. 229
 6.4.4 LSCM Imaging .. 231
 6.4.5 LIMA Imaging ... 235
 6.4.6 Histology ... 237
6.5 Conclusions ... 239

Chapter 7. Summary and Future Direction .. 242

7.1 Summary and Future Direction ... 242

Bibliography .. 248

Appendix A ... 264

Appendix B ... 265
Abstract

In this thesis, we describe several imaging techniques specifically designed and developed for the assessment of pulmonary structure, function and pathology. We then describe the application of this technology within appropriate biological systems, including the identification, tracking and assessment of lung tumors in a mouse model of lung cancer.

The design and development of a Large Image Microscope Array (LIMA), an integrated whole organ serial sectioning and imaging system, is described with emphasis on whole lung tissue. This system provides a means for acquiring 3D pathology of fixed whole lung specimens with no infiltrative embedment medium using a purpose-built vibratome and imaging system. This system enables spatial correspondence between histology and non-invasive imaging modalities such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), providing precise correlation of the underlying “ground truth” pathology back to the in vivo imaging data. The LIMA system is evaluated using fixed lung specimens from sheep and mice, resulting in large, high-quality pathology datasets that are accurately registered to their respective CT and H&E histology.

The implementation of an in vivo micro-CT imaging system in the context of pulmonary imaging is described. Several techniques are initially developed to reduce artifacts commonly associated with commercial micro-CT systems, including geometric gantry calibration, ring artifact reduction and beam hardening correction. A computer controlled Intermittent Iso-pressure Breath Hold (IIBH) ventilation system is then developed for reduction of respiratory motion artifacts in live, breathing mice. A study validating the repeatability of extracting valuable pulmonary metrics using this technique against standard respiratory gating techniques is then presented.

The development of an ex vivo laser scanning confocal microscopy (LSCM) and an in vivo catheter based confocal microscopy (CBCM) pulmonary imaging technique is described. Direct high-resolution imaging of sub-pleural alveoli is presented and
an alveolar mechanic study is undertaken. Through direct quantitative assessment of alveoli during inflation and deflation, recruitment and de-recruitment of alveoli is quantitatively measured. Based on the empirical data obtained in this study, a new theory on alveolar mechanics is proposed.

Finally, a longitudinal mouse lung cancer study utilizing the imaging techniques described and developed throughout this thesis is presented. Lung tumors are identified, tracked and analyzed over a 6-month period using a combination of micro-CT, micro-PET, micro-MRI, LSCM, CBCM, LIMA and H&E histology imaging. The growth rate of individual tumors is measured using the micro-CT data and traced back to the histology using the LIMA system. A significant difference in tumor growth rates within mice is observed, including slow growing, regressive, disappearing and aggressive tumors, while no difference between the phenotype of tumors was found from the H&E histology. Micro-PET and micro-MRI imaging was conducted at the 6-month time point and revealed the limitation of these systems for detection of small lesions (<2mm) in this mouse model of lung cancer. The CBCM imaging provided the first high-resolution live pathology of this mouse model of lung cancer and revealed distinct differences between normal, suspicious and tumor regions. In addition, a difference was found between control A/J mice parenchyma and Urethane A/J mice ‘normal’ parenchyma, suggesting a “field effect” as a result of the Urethane administration and/or tumor burden. In conclusion, a comprehensive murine lung cancer imaging study was undertaken, and new information regarding the progression of tumors over time has been revealed.
Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

[Signature]

Eman Namati
Acknowledgments

This large collection of work could not have been accomplished without the help of many individuals who I would like to sincerely thank.

First and foremost I would like to thank my primary supervisor Professor Geoffrey McLennan for his continual support, encouragement and enthusiasm. During this time he provided direction and advice both academically as a professional, and as a friend, for whom I will always be grateful.

I would also like to thank Professor Murk Bottema for all of his academic guidance and great discussions. I could not have had a better transnational academic supervisor, thank you.

I would like to acknowledge the following individuals for their help, advice and collaboration throughout my doctoral program, Prof. Eric A. Hoffman, Prof. Alan Ross, Prof. Michael J. Welsh, Prof. Joeseph Zabner, Prof. Milan Sonka, Prof. Daniel Thedens, Dr Deokiee Chon, Dr Melissa Suter, Dr Osama Saba, Dr David Stoltz, Dr Shaun S Gleason, Jacqueline Thiesse, Jessica de Ryk, Zaid Towfic, Amanda Smith, Andrew Stessman, Jered Sierens, Keith Brautigham, Michael Wardenburg, Peter Taft, Thomas Moninger, and Susan Walsh.

I would like to deeply thank my parents Mohammad and Akram Namati, for bringing me to Australia and encouraging me to think, discover and learn, even when it got me in trouble!

I would also like to thank all my family and friends both in Australia and in the United States, who have helped me through this endeavor with positive enthusiasm.

I would finally like to thank my wife, Jacqueline Rose Thiesse. Initially for being a great friend and now a wonderful partner. Thank you for getting me through the hard times, and sharing all the great times. I love you!
Publications

International Journal Articles (in chronological order).

International Conference Proceedings (in chronological order).

List of Figures

Figure 2.1: The human respiratory system, [8].......................... 11
Figure 2.2: Cascading airway structure, Adapted from [9, 11]............... 13
Figure 2.3: Cross sectional area vs. airway generation number, [9]........ 13
Figure 2.4: Alveolar structure, with permission from [16]. 14
Figure 2.5: Schematic of ventilation and perfusion through the human lung, [9]... 15
Figure 2.6: Sheep lung fixed using the Heitzman technique, a) dorsal, b) ventral and c) Left lateral view.. 19
Figure 2.7: Schematic example of an X-ray source.......................... 24
Figure 2.8: CCD readout flow diagram.. 25
Figure 2.9: Geometry co-ordinate system, recreated from [38]. 28
Figure 2.10: F(u,v) the Fourier transform of the object f(x,y) along radial lines attained through projections of the object at discrete angles, recreated from [38]... 31
Figure 2.11: Comparison of reconstruction with 4, 8 & 16 projections......... 33
Figure 2.12: Shepp-Logan, Ram-Lak and Hamming convolution filters, where zero frequency is at the center of the x-axis............................. 33
Figure 2.13: Typical micro computed tomography cone-beam geometry........ 36
Figure 2.14: Ring artifact example from a micro-CT water phantom scan....... 37
Figure 2.15: Marvin Minsky's 1961 Confocal Microscope patent............... 41
Figure 2.16: Simplified confocal microscope schematic diagram [45]......... 42
Figure 2.17: Two dimensional galvanometer scan head, modified from [46]. 43
Figure 2.18: Quantum Efficiency comparison across a variety of light detecting devices, modified from [47]... 45
Figure 2.19: Photomultiplier schematic diagram, modified from [48].......... 45
Figure 2.20: Airy disk pattern, left: top view, right: side profile, modified from [46]. ... 48
Figure 2.21: Light scanning techniques: (a-c) Proximal Scanning, (a) Cascaded galvanometer mirror couple used to scan the excitation and emission beam across the proximal end of a fiber bundle. (b) Proximal line scanning using a cylindrical lens to focus the illumination into a line, scanning the face of a fiber bundle one line at a time. (c) Proximal scanning using a spatial light modulator, which illuminates each pixel sequentially with a stationary excitation beam. (d-f) Distal Scanning, (d) Distal 2D mirror scanning using a piezo-electric mirror or a MEMS mirror setup. (e) Distal fiber tip scanning where the tip of the excitation fiber is vibrated at resonance to achieve a scanning pattern. (f) Distal fiber-objective scanning where both the fiber and the objective lens couple are vibrated at resonance. Modified from [70].

Figure 2.22: Coherent imaging fiber bundle illustration, modified from [73].

Figure 2.23: (left) Magnified view (bar equals 500 \(\mu \)m) of a MEMS mirror [70], (right) dual-axis confocal micro-endoscope head incorporating MEMS mirror [67].

Figure 2.24: Virtual Bronchoscopy with path finding to a peripheral location.

Figure 2.25: Metabolic activation of ethyl carbamate to DNA adducts in the mouse lung, modified from [86].

Figure 2.26: Timeline of lung tumor carcinogenesis in the Urethane-induced lung cancer model, recreated from [109].

Figure 3.1: The large image microscope array (LIMA) system shown with; a CCD digital camera mounted to a stereomicroscope, which are both positioned over the specimen stage via a gantry to image the tissue en bloc.

Figure 3.2: (a) represents a schematic of the large-scale dual-frequency vibrating knife system from a top and side view. (b) a pictorial representation of the low frequency motion through rotation of the motor assembly and high frequency motion as depicted by the waves protruding from the linear air vibrator.

Figure 3.3: (a) shows the microtome and locking mechanism (on the left) that ensures correct positioning of the stage for image acquisition. (b) shows a close up of the “photo locking” mechanism prior to an imaging sequence.
Figure 3.4: The graphical user interface used to control the functions of the LIMA system. (a) the tissue setup phase, where the user interactively selects the area of the microtome stage that includes the tissue specimen. (b) the image preparation step, where the user interactively determines the centre of the tissue specimen, along with the magnification, field of view and boundaries for image acquisition. (c) left panel shows the current high magnification image which is being captured and the right panel shows the completed montage of the sub-images.

Figure 3.5: Sheep (a-b) and mouse (c-d) lung fixed using the Heitzman technique. Scale bar for (a-b) is 100mm and (c-d) is 5mm.

Figure 3.6: (a) represents a CT slice from the upper lobe of a fixed sheep lung and figure 5 (b) represents the corresponding stitched LIMA image.

Figure 3.7: An example application of the LIMA system for the registration of a multi-modal fixed sheep lung dataset. (a) represents the color LIMA image, (b) represents the micro-CT radiological image and finally (c) represents the H&E histopathology image, from the same location. The images have been registered using a thin-plate spline algorithm and the final multi-modal dataset provides registered radio-density, color and cellular information. In (d) and (e), a small area to the left of images (a-b) has been magnified to reveal the strong correlation between the registered H&E histology and micro-CT image with respect to the LIMA dataset.

Figure 3.8: Mouse lung mounted inside the Micro-CT and LIMA static orientation device.

Figure 3.9: Image acquisition and registration pipeline using the ex vivo micro-CT and LIMA datasets as the reference.

Figure 3.10: An example of a registered mouse lung dataset from the in vivo state down to the histology level can be seen. (a) represents a 28-micron slice from the original in vivo micro-computed tomography scan. (b) represents a 28-micron slice from the fixed ex vivo micro-computed tomography scan. (c) represents a final LIMA image, stitched from 49 sub-images at 40x magnification. Finally, (d) represents the corresponding H&E histopathology image for the same slice. In this example we can see the advantage of the
LIMA system in providing spatial correlation between a non-destructive three-dimensional modality such as the micro-CT with respect to the destructive histopathology imaging.......................... 82

Figure 3.11: 3D representation of the entire mouse lung boundary obtained from the LIMA system is shown; clearly the non iso-tropic nature of this imaging system is evident by the jarred edges between slices......................... 82

Figure 4.1: Siemens MicroCAT-II micro-Computed Tomography scanner.......... 90
Figure 4.2: Brass ball bearing phantom encased in polyurethane foam............ 91
Figure 4.3: Schematic geometric illustration for calculating the source-to-object and source-to-detector distance using the ball bearing phantom X-ray projections at two known distances... 92

Figure 4.4: Ball phantom projection, a) position 1 – closer to detector, b) position 2 – closer to source.............................. 93
Figure 4.5: Change in projected ball phantom diameter in mm (y-axis) over 360 degrees (x-axis)... 94

Figure 4.6: Calculated change in object position with respect to source and detector in mm (y-axis) over 360 degrees (x-axis)............................... 94

Figure 4.7: a) original sinogram with average column intensity profile (red), smoothed profile (black) and difference between the normal and smoothed profile (blue), b) original sinogram with filter applied c) calibrated sinogram with average column intensity profile (red), smoothed profile (black) and difference between the normal and smoothed profile (blue), d) calibrated sinogram with filter applied... 96

Figure 4.8: Magnified sinogram, a) original sinogram, b) original sinogram with average column intensity profile (red), smoothed profile (black) and difference between the normal and smoothed profile (blue), b) original sinogram with filter applied... 96

Figure 4.9: Water phantom scan with no hardware filter............................. 97
Figure 4.10: Water phantom scan with 3mm Aluminum filter....................... 98
Figure 4.11: (a) Beam hardening correction phantom and (b) representative projection X-ray image. ... 99

Figure 4.12: (a) log calibrated projection X-ray of the water phantom with 0.5mm Al filter, (b) attenuation profile plot across the varying thickness material as depicted in the red line in (a). ... 99

Figure 4.13: Ex vivo lung axial slice, a) normal reconstruction, b) reconstruction with dynamic source to detector distance. ... 101

Figure 4.14: Ex vivo fixed lung axial slice, (a) normal reconstruction, (b) reconstruction with dynamic center offset distance. ... 101

Figure 4.15: a) Original axial lung image with moderately severe ring artifacts, b) image a) post ring artifact reduction, c) Original axial lung image with moderate ring artifacts, d) image c) post ring artifact reduction. 102

Figure 4.16: Beam hardening water phantom, (a) 1 cm phantom axial slice, (b) 2 cm phantom axial slice and (c) 3 cm phantom axial slice, red line shown for location of profile plots in Figure 4.17. ... 103

Figure 4.17: Profile plot across red line shown in Figure 4.16 (a-c) for water phantom at 1, 2 & 3cm thickness. ... 104

Figure 4.18: Corrected beam hardening water phantom, (a) 1 cm phantom axial slice, (b) 2 cm phantom axial slice and (c) 3 cm phantom axial slice, red line shown for location of profile plots in Figure 4.19. ... 104

Figure 4.19: Profile plot across red line shown in Figure 4.18 (a-c) for corrected water phantom at 1, 2 & 3cm thickness. ... 105

Figure 4.20: Scireq Flexivent small animal computer-controlled ventilator. 110

Figure 4.21. Respiratory Gating System Block Diagram. --- Dotted lines represent pneumatic pipeline. S - represents electronic controlled solenoids. 111

Figure 4.22. Late Inspiratory (solid) and Late Expiratory (dashed) gating waveform schematic. ... 112

Figure 4.23: IIBH breathing sequence; hyperventilated breathing, two deep breaths (sighs) and no ventilation, triggering of a forced airway pressure (breath-hold),
at which time the Micro-CT is triggered and multiple angles of view are acquired... 113

Figure 4.24: Mouse tracheotomy – surgical series from left to right............... 114

Figure 4.25. Axial slice gating comparison, a) No Gating, b) LI Gating, c) LE Gating, d) IIBH Gating. (window level -1000 to 2000 HU)..................... 118

Figure 4.26: Coronal density profile, a) No Gating, b) LI Gating, c) LE Gating, d) IIBH Gating... 119

Figure 4.27: Density Profile of Lung-Abdomen Interface................................. 120

Figure 4.28: Right Main Bronchus Density Profile, a) No Gating, b) LI Gating, c) LE Gating, d) IIBH Gating. ... 121

Figure 4.29: Right main bronchus density profile plot..................................... 121

Figure 4.30: 3D reconstruction of the mouse lung and spine. Note the clear delineation of the ribs as well as lobar fissures and diaphragmatic surface indicating very accurate gating during scanning of a live breathing mouse... 122

Figure 4.31: (a) No gating, (b) LI gating, (c) LE gating, (d) IIBH gating volume repeatability curve (centerline represents mean, dotted lines represent two standard deviations)... 123

Figure 4.32: (a) No Gating, (b) LI Gating, (c) LE Gating, (d) IIBH Gating Air Content repeatability curve (centerline represents mean, dotted lines represent two standard deviations).. 124

Figure 4.33.: a) axial & b) coronal 2D air content of mouse lung with air content color map. As seen in both, the change in air content is very slight, shifting from dependant to non-dependant in the axial and apex to the base in the coronal. ... 125

Figure 4.34.: a) 3D reconstruction of mouse lung air content with air content color map. b) same as (a) including spine and ribs, red arrows indicate beam hardening effects from the spine and ribs.. 126

Figure 5.1: *Ex vivo* mouse lung imaging chamber, which is air and water tight to allow measurement of lung volume change.................................... 135
Figure 5.2: *Ex vivo* mouse lung imaging schematic, consists of a custom iso-pressure system for inflating the lung to the desired pressure, a commercial Bio-Rad laser scanning confocal microscope and a custom in vitro air and water tight lung imaging chamber. ... 136

Figure 5.3: Example of automated intercept labeling. Beginning of a wall is represented by a blue cross and end of a wall by a red cross. Logging of intercepts allows accurate calculation of airspace and wall chord lengths.... 137

Figure 5.4: Confocal images of the same mouse lung throughout an inflation/deflation cycle. (a)-(h) represent 5 micron thick LSCM sections from the same mouse lung inflated through pressures 0-35 cmH2O in 5 cmH2O increments, respectively, and (j)-(o) for deflation. All images were acquired using a 10x objective and field of view of 1.2mmx1.2mm. 140

Figure 5.5: (a) Change in lung volume vs. pressure, (b) Alveolar airspace number in field of view (1.44mm2) vs. inflation pressure, (c) Mean Chord Length of alveolar airspace vs. inflation pressure, (d) Mean Chord Length of alveolar walls. Error bars represent the standard deviation (+-SD) for five mice....... 141

Figure 5.6: (a) Inflation 0-35 cmH2O, with wall intercepts. (b) Inflation 0-35 cmH2O, clustered by color-coded area (μ²). (c) Inflation 0-35 cmH2O, histogram of airspace chord lengths (μ). γ₁=Skew, γ₂=Kurtosis, red line = median value. ... 142

Figure 5.7: (a) Deflation 35-0 cmH2O, with wall intercepts. (b) Deflation 35-0 cmH2O, clustered by color-coded area (μ²). (c) Deflation 35-0 cmH2O, histogram of wall chord lengths (μ). γ₁=Skew, γ₂=Kurtosis, red line = median value................................. 143

Figure 5.8: 3D comparison of sub-pleural alveoli at 10 cmH2O (top row) and 35 cmH2O (bottom row) airway pressure. Here, it can be seen that there is minimal compression artifacts at the cover slip interface, where (a) & (d) are looking into the lung through the pleura, (b) & (e) are side views and finally (c) & (f) are looking out of the lung through the parenchyma................................. 144

Figure 5.9: Cartoon depiction of the mother/daughter alveolar hypothesis during the first breath post deflation. During inflation, the mother alveoli incrementally expand with proportional expansion in the alveolar walls and pores of Kohn.
As the surfactant layer over the pores of Kohn becomes thinner and the pressure gradient between the mother and daughter alveoli increases, air passes through to the daughter alveoli. The recruitment of the daughter alveoli leads to a subsequent reduction in the average size of the mother alveoli as more lung volume is distributed. During deflation, the pressure reduces in both the mother and daughter alveoli until the pores of Kohn reduce in diameter and the surfactant layer reforms its seal, trapping the remaining air inside the daughter alveoli and leading to recruitment of the daughter alveoli. Note: pressure values have been extrapolated from the empirical data obtained in the present mouse lung study.
Figure 5.20: (a) airspace and wall chord analysis on CBCM alveolar image shown in Figure 5.18. The calculated MCLa is 39\(\mu\)m and the MCLw is 12\(\mu\)m. (b) area based cluster analysis of CBCM alveolar airspace, where 121 spaces have been identified from small (red) to large (dark-blue).

Figure 5.21: Two examples of alveoli ‘popping’ open in C57BL/6 mice lungs expressing GFP. Each frame was captured over 50ms. Acquired using a catheter-based confocal microscopy technique.

Figure 6.1: Custom tunnel heating chamber.

Figure 6.2: (a) mouse endoscope with optical viewfinder, (b) magnified image of bronchoscope tip against a United States penny.

Figure 6.3: Mouse-bronchoscopy - image acquired at the vocal chords, (a) original image, (b) image with dashed outline of vocal chords. Bright red light in the trachea is a result of the snake light placed over the chest wall, and aides in guidance.

Figure 6.4: Small animal ventilator with custom respiratory gating micro-controller.

Figure 6.5: Custom electronic pressure controller.

Figure 6.6: Mouse connected to ECG and Pulse Ox sensors prior to Tracheotomy.

Figure 6.7: *in vivo* CBCM mouse lung imaging setup.

Figure 6.8: Gantt chart representing the timeline for the four groups of Urethane mice and single normal group in this study.

Figure 6.9: Custom lung embedding equipment including the orientation bracket, foam encasing mold and two-part polyurethane foam.

Figure 6.10: Mouse lung suspended with fishing line and tied in place with one suture around the trachea. A second loose suture loop is place around the lung and fishing line in order to maintain lobe positions during embedding.

Figure 6.11: Foam encased mouse lung mounted to the base of the orientation bracket.
Figure 6.12: Schematic illustration of the *ex vivo* image acquisition process utilizing the orientation bracket, during (a) micro-CT imaging, (b) LIMA imaging and (c) LIMA sectioning and H&E Histology processing.. 182

Figure 6.13: Siemens OncoCare prototype application used to facilitate in semi-automated segmentation of mouse lung tumors... 187

Figure 6.14: Nodule segmentation example. Top left panel represents the OncoCare segmentation software. Panels from left to right represent serial transverse serial images of the nodule with illustration of segmentation border in red... 188

Figure 6.15: Multi-modal registration flow diagram. ... 192

Figure 6.16: (a-d) Coronal micro-CT image from a Urethane mouse lung at 2, 3, 4 and 6-month time points. Red arrows indicate the same tumor progressing over time... 193

Figure 6.17: Three-dimensional reconstruction of a Urethane mouse depicting the skeletal system (yellow), lung (pink), vasculature (blue) and tumor volume (red). ... 194

Figure 6.18: (a) magnified view of the tumor volume and surrounding vasculature, (b) tumor volume with representative projection X-rays.......................... 195

Figure 6.19: Group 3, Mouse 3, RECIST tumor size (mm) versus time for each nodule. .. 196

Figure 6.20: Group 3, Mouse 3, WHO tumor size (mm) versus time for each nodule. ... 197

Figure 6.21: Group 3, Mouse 3, tumor volume (µl) versus time for each nodule.. 198

Figure 6.22: Mean number of tumors per mouse, left lung, right apical lobe, right azygous lobe, right diaphragmatic lobe and right cardiac lobe versus number of months after Urethane administration. Error bars represent the SEM........... 199

Figure 6.23: Tumor incidence and lobe volume versus lobe location................. 200

Figure 6.24: Plot of the mean tumors size measured using the RECIST criteria versus time. ... 201

Figure 6.25: Plot of the mean tumors size measured using the RECIST criteria versus lobe location... 202
Figure 6.26: Plot of the mean tumors size measured using the RECIST criteria versus time for each lobe. ... 203

Figure 6.27: Percentage histogram for the mean tumor size measured using the RECIST criteria ... 204

Figure 6.28: Percentage histogram for the mean tumor size measured using the RECIST criteria for each lobe ... 204

Figure 6.29: Percentage histogram for the mean tumor size measured using the RECIST criteria at each time point ... 205

Figure 6.30: Disappearing nodule illustration. (a-b) represents the identified nodule at month 2, and (c-d) represents the same region post registration with no nodule. (a) and (c) represent screen shot from Siemens OncoCare nodule segmentation package, and (b) and (d) represents a magnified image of the appropriate transverse slice from the bottom left sub-image of each time point. ... 207

Figure 6.31: (a) 18F-FDG PET scan of a Urethane mouse at the 6-month time point, (b) 18F-FLT PET scan of the same mouse at the same time point, and (c) 18F-FDG PET scan of the same mouse at the 9-month time point. Window and level are constant across images ... 208

Figure 6.32: Registered micro-CT lung dataset from the same mouse shown in Figure 6.31 at 6 and 9 months in (a) and (b), respectively. (c) Illustrates the 3D reconstruction of the lung volume at 6 (blue) and 9 (red) months. Clearly the lung volume has significantly increased ... 208

Figure 6.33: Transverse thoracic image of the same Urethane mouse using the (a) micro-CT and (b) micro-MRI system, respectively (scans acquired one day after another). As seen tumors indicated and labeled 2, 3 and 4 are visible in both the micro-CT and micro-MRI image, while nodule 1 is only visible in the micro-CT image. ... 209

Figure 6.34: CBCM images from (a) normal A/J mouse and (b-d) Urethane mouse lung at the 6-month time point, (a) non-suspicious region from normal A/J mouse, (b) non-suspicious region from Urethane mouse (c) suspicious alveolar region from Urethane mouse, (d) large peripheral tumor from Urethane mouse. .. 210
Figure 6.35: LSCM images from a normal A/J and a Urethane mouse lung at 6-months using the custom imaging chamber, (a) normal A/J mouse lung parenchyma, (b) ‘normal’ parenchyma from a Urethane mouse lung surrounding a micro adenoma and (c) tumor region from Urethane mouse lung. Image scale consistent across tiled examples...............................212

Figure 6.36: Low magnification (4x objective) LSCM image of a tumor from a Urethane mouse at 6-months. Tumor located at the base of the left lung......213

Figure 6.37: LSCM images from a Urethane mouse lung at 6-months using the custom imaging chamber, (a) normal alveolar tissue, (b) tumor tissue. Image scale consistent across examples..214

Figure 6.38: Urethane mouse lung tumor at 6-months, imaged using the LSCM imaging chamber technique with PKH26-PCL macrophage labeling........214

Figure 6.39: Heitzman fixed, foam embedded Urethane mouse lung micro-CT dataset. 24 images with 28 microns thickness and 500 micron spacing between images are shown from the apex to base of the lung, top to bottom, left to right respectively. ..216

Figure 6.40: Heitzman fixed, foam embedded Urethane mouse lung LIMA complete dataset. Each tile represents an en bloc image acquired prior to a 500 micron section from the apex to base of the lung, top to bottom, left to right respectively. ..217

Figure 6.41: Heitzman fixed, foam embedded Urethane mouse lung H&E Histology dataset. Each tile represents a 5 micron thick section from the respective 500 micron LIMA section from the apex to base of the lung, top to bottom, left to right respectively. ..218

Figure 6.42: Registered (a) in vivo micro-CT, (b) fixed ex vivo micro-CT, (c) LIMA and (d) H&E Histology dataset from the six-month time point.............219

Figure 6.43: Micro-CT axial images at 2, 3 and 4 months post Urethane administration for the dataset shown in Figure 6.42.................................220

Figure 6.44: Urethane mouse lung histology at 6-months (a-d) normal parenchyma, (e-h) alveolar hyperplasia, (i-l) benign micro adenoma (<0.5mm), (m-p) benign
papillary adenoma (>0.5mm), (q-t) pre-invasive adenoma (>1mm), (u-x) malignant adenocarcinoma at 12 months (>5mm). .. 221

Figure 6.45: Tumor progression from three lesion identified in the left lung of the Urethane mouse lung shown in Figure 6.39, Figure 6.40 and Figure 6.41.... 222

Figure 6.46: Magnified cascading (4x, 10x and 20x) histology from three six-month lesions as tracked and graphed in Figure 6.45. Panel (a-c) represents tumor LL1_2_H, (d-f) represents tumor LL1_1_S, and (g-i) represents tumor LL1_4_P. ... 223

Figure 6.47: CBCM image over a tumor region with (a) no pressure applied to the probe and (b) with slight pressure applied to the probe.................. 235
List of Tables

Table 1. Density profile slope comparison... 120
Table 2. Right Main Bronchus Density profile slope comparison.............................. 121
Table 3: Tumor Descriptive Statistics... 195
Table 4: Tumor incidence and lobe volume versus lobe location................................. 199
Table 5: RECIST statistics for lung tumors versus scan time....................................... 201
Table 6: RECIST statistics of tumor size versus anatomical lobes.............................. 202
Table 7: RECIST statistics for each lobe at each time point.. 203
List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu)</td>
<td>Frequency</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Wavelength</td>
</tr>
<tr>
<td>(^{18}\text{F-FDG})</td>
<td>Fluodeoxyglucose F18</td>
</tr>
<tr>
<td>(^{18}\text{F-FLT})</td>
<td>Fluorothymidine F18</td>
</tr>
<tr>
<td>A/D</td>
<td>Analog-to-Digital</td>
</tr>
<tr>
<td>AOTF</td>
<td>Acousto-Optical Tunable Filter</td>
</tr>
<tr>
<td>BASC</td>
<td>Bronchio-Alveolar Stem Cell</td>
</tr>
<tr>
<td>(c)</td>
<td>Speed</td>
</tr>
<tr>
<td>CBCM</td>
<td>Catheter Based Confocal Microscopy</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge Coupled Device</td>
</tr>
<tr>
<td>cGy</td>
<td>Centi-Gray</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DPSS</td>
<td>Double Pumped Solid State</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double Stranded DNA</td>
</tr>
<tr>
<td>(E)</td>
<td>Energy</td>
</tr>
<tr>
<td>EM</td>
<td>Electro Magnetic</td>
</tr>
<tr>
<td>eV</td>
<td>electron Volt</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of View</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GRE</td>
<td>Gradient-Recalled Echo</td>
</tr>
<tr>
<td>GRIN</td>
<td>Gradient-Index</td>
</tr>
<tr>
<td>HU</td>
<td>Hounsfield Unit</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse Fast Fourier Transform</td>
</tr>
<tr>
<td>IIBH</td>
<td>Intermittent Iso-pressure Breath hold</td>
</tr>
<tr>
<td>IM</td>
<td>Intra Muscular</td>
</tr>
<tr>
<td>IP</td>
<td>Intra Peritoneal</td>
</tr>
<tr>
<td>IV</td>
<td>Intra Venous</td>
</tr>
<tr>
<td>LE</td>
<td>Late Expiratory</td>
</tr>
<tr>
<td>LI</td>
<td>Late Inspiratory</td>
</tr>
<tr>
<td>LIMA</td>
<td>Large Image Microscope Array</td>
</tr>
<tr>
<td>LSCM</td>
<td>Laser Scanning Confocal Microscopy</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>MCL</td>
<td>Mean Chord Length</td>
</tr>
<tr>
<td>MCLa</td>
<td>Mean Chord Length of Airspace</td>
</tr>
<tr>
<td>MCLw</td>
<td>Mean Chord Length of Wall</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro Electro Mechanical System</td>
</tr>
<tr>
<td>micro-CT</td>
<td>micro-Computed Tomography</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MTF</td>
<td>Modular Transfer Function</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Non-Small-Cell Lung Cancer</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional Integrative Derivative</td>
</tr>
<tr>
<td>PMT</td>
<td>Photo Multiplier Tube</td>
</tr>
<tr>
<td>RECIST</td>
<td>Response Evaluation Criteria in Solid Tumors</td>
</tr>
<tr>
<td>rtTA</td>
<td>Reverse Tetracycline Transactivator</td>
</tr>
<tr>
<td>SCLC</td>
<td>Small-Cell Lung Cancer</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>ssDNA</td>
<td>Single Stranded DNA</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-Transistor Logic</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>