The Synthesis and Characterisation of Polyhedral Oligomeric Silsesquioxane Bound Chromophores

David J. Clarke (MSc.) (BSc.Hons)

Thesis submitted to the Faculty of Science and Engineering of Flinders University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in
CHEMISTRY

Prof Janis Matisons
Prof George Simon

September 2008
Adelaide, South Australia
The Synthesis and Characterisation of Optically Active Polyhedral Oligomeric Silsesquioxanes

David J. Clarke (MSc.) (BSc.Hons)

ABSTRACT

This research involved the synthesis and characterisation of a range of optically active polyhedral oligomeric silsesquioxane (POSS) compounds.

POSS precursor compounds containing functional groups required for subsequent attachment of the desired functional groups have been synthesised. Examples of such precursor compounds include mono-functionalised POSS compounds with periphery aldehyde, azide, amino and pyridyl functional groups.

A variety of POSS compounds, functionalised with a range of optical functionalities, including optical limiters such as fulleropyrrolidine and iminofullerene, and dyes and pigments, including naphthalene, biphenyl, perylene, pyrene and porphyrin have been synthesised.

The reaction of mono-functionalised POSS aldehydes with fullerene (C\textsubscript{60}) in the presence of N-methylglycine yielded the desired POSS fulleropyrrolidines, whilst reaction of mono-functionalised POSS azide with C\textsubscript{60} yielded POSS iminofullerenes. All POSS fullerene compounds were characterised by power limiting measurements, exhibiting comparable power limiting to that of parent C\textsubscript{60}.

The microwave condensation of mono-amino POSS with a range of mono- and bis-anhydrides yielded the POSS imide compounds, which were characterised by UV-Vis and fluorescence spectrophotometry. The perylene POSS imide derivative was further characterised by single crystal x-ray crystallography. The naphtha and biphenyl POSS imides exhibited extremely weak fluorescence, whilst the perylene
POSS imide displayed particularly strong fluorescence, with a quantum yield approaching unity.

The incorporation of a pyridyl group on the periphery of a mono-functionalised POSS cage allowed for the synthesis of the first porphyrin functionalised POSS compound. Mono-porphyrin POSS exhibited comparable absorption properties to other pyridyl ligated ruthenium porphyrins.

Mono-functionalised pyrene POSS compounds were prepared through the reaction of 1-pyrene acid chloride with mono(3-aminopropyl)POSS. This synthetic pathway offered a convenient route to mono-functionalised pyrene POSS, in preference to the multi-substitution associated with Heck coupling. Mono-pyrene POSS was determined to be strongly fluorescent, exhibiting a high quantum yield of fluorescence.
ACKNOWLEDGEMENTS

I would like to thank my supervisors Prof. Janis Matisons and Assoc. Prof. George Simon for the opportunity to undertake this project and their support and assistance. Additionally, I would like to express gratitude to Dr Mark Fisher for his support in the latter stages of the project and the opportunity to work on the biodiesel program, which taught me about chemistry in the real world. I must also thank Dr Stephen Clarke for always making me focus the final hurdle and providing part of my scholarship towards the latter stages the project.

Thanks to Dr Marek Samoc and Dr Anna Samoc at ANU for their help in obtaining the power limiting data and also to Dr Brian Skelton for the x-ray crystallography measurement.

I would also like to thank all the past and present members of the Nanomaterials group at Flinders University. Special thanks must go to Simon Mathew for all his help, ideas and encouragement over my time at Flinders, and for proving that the best ideas are often borne at the pub over a drink. I would also like to say cheers to Rachel Pillar for her help in editing parts of this thesis; it was much appreciated, even if she is a physical chemist.

To my family and Fee, it’s been a rough time these past few years but you guys helped me through it, without your love and support there is no way I could have finished this thesis.

Finally, I’d like to dedicate this thesis in part to my late brother in law, Darren. Thanks for the memories mate, I wish you were here to see me finally finish this; it’s been a constant source of amusement between us over the years and life isn’t the same without you.
'I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text'

..

(D. J. CLARKE)
Table of Contents

LIST OF FIGURES .. x

LIST OF TABLES ... xv

LIST OF ABBREVIATIONS .. xvi

1 **INTRODUCTION** .. 1

1.1 **Outline & Aims** ... 1

1.2 **Silsesquioxanes** ... 3

 1.2.1 Synthesis of POSS Compounds ... 4

 1.2.1.1 Synthesis of Octahyridodimethyl silsesquioxane ... 7

 1.2.1.2 Synthesis of Octakis(hydridodimethylsiloxo)octasilsesquioxane 8

 1.2.1.3 Tetrabutylammonium Fluoride Catalysed Synthesis of POSS 9

 1.2.1.4 Synthesis of Incompletely Condensed Silsesquioxanes 10

1.3 **Functionalisation of POSS** .. 14

 1.3.1 Hydrosilylation ... 14

 1.3.2 Functionalisation of POSS by Hydrosilylation .. 18

1.4 **Functionalisation of POSS by Other Reactions** ... 20

 1.4.1 Monosubstituted POSS Derivatives .. 20

 1.4.1.1 Method 1 .. 21

 1.4.1.2 Method 2 .. 22

 1.4.1.3 Method 3 .. 24

 1.4.2 Subsequent Reactions of the R’ Group .. 25

 1.4.3 Reaction of the Trisilanol with Mono-Or Dihalide Organosilanes 26

 1.4.4 Metal Silsesquioxanes ... 28

 1.4.5 Octa-substituted POSS Derivatives ... 28

1.5 **POSS Polymers** .. 36

1.6 **Summary** ... 36

1.7 **References** ... 37

2 **POSS BOUND FULLERENES** .. 43

2.1 **Outline** .. 43

2.2 **Fullerenes** ... 43

2.3 **Functionalisation of C_{60}** ... 44

 2.3.1 Addition of Diazomethane and Alkyl Azides to C_{60} ... 45

 2.3.2 Addition of Stabilised α-Halomalonate Anions to C_{60} 47

 2.3.3 Cycloaddition of Azomethine Ylides to C_{60} .. 48

2.4 **Optical Limiting** .. 49

2.5 **Fulleropyrrolidines** .. 53

2.6 **Synthesis** .. 58

2.7 **Synthetic Pathway 1** ... 59

2.8 **Characterisation** ... 60

2.9 **Results & Discussion** .. 60

 2.9.1 1H NMR .. 60

 2.9.1.1 Mono-vinyl POSS ... 60

 2.9.1.2 [2-(4-dimethylsilyl)phenyl]-1,3-dioxolane .. 62

 2.9.1.3 Mono-dioxolane POSS .. 62

 2.9.1.4 Mono-aldehyde POSS ... 64

 2.9.1.5 POSS Fulleropyrrolidines .. 65

 2.9.2 13C NMR ... 67

 2.9.2.1 Mono-vinyl POSS .. 67

 2.9.2.2 [2-(4-dimethylsilyl)phenyl]-1,3-dioxolane ... 67

 2.9.2.3 Mono-dioxolane POSS .. 69

 2.9.2.4 Mono-aldehyde POSS ... 69
2.10 Synthetic Pathway 2

2.11 Results & Discussion

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
</tr>
<tr>
<td>81</td>
</tr>
<tr>
<td>82</td>
</tr>
</tbody>
</table>

2.12 Iminofullerenes

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
</tr>
</tbody>
</table>

2.13 Results & Discussion

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
</tr>
<tr>
<td>96</td>
</tr>
<tr>
<td>97</td>
</tr>
</tbody>
</table>

2.14 Conclusions and Future Work

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
</tr>
</tbody>
</table>

2.15 References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
</tr>
</tbody>
</table>

3 POSS IMIDES

3.1 Outline

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
</tr>
</tbody>
</table>

3.2 Perylenes

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
</tr>
</tbody>
</table>

3.3 POSS Imides

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
</tr>
</tbody>
</table>

3.4 Synthesis

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
</tr>
</tbody>
</table>

3.5 Characterisation

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1. Random, ladder, partial and cage conformations of silsesquioxanes 3
Figure 1.2. M, D, T, and Q type silicone units .. 4
Figure 1.3. Synthesis of POSS through Hydrolytic Condensation 5
Figure 1.4. Proposed mechanism of POSS synthesis ... 5
Figure 1.5. Synthesis of T$_8^H$... 8
Figure 1.6. Synthesis of Q$_8M_8^H$.. 9
Figure 1.7. ORTEP representation of tetrabutylammonium octaphenyl 10
Figure 1.8. Examples of incompletely condensed POSS cages .. 11
Figure 1.9. Hydrolysis of acetonitrile ... 12
Figure 1.10. Silsesquioxane isomers formed in the hydrolytic condensation of CySiCl$_3$ in acetonitrile .. 13
Figure 1.11. Acid-mediated cleavage and rearrangement of Cy$_2$Si$_4$O$_8$ 13
Figure 1.12. Synthesis of incompletely condensed POSS through base-mediated cleavage of fully condensed T$_8$ cage ... 14
Figure 1.13. Two possible isomers formed from the hydrosilylation reaction 15
Figure 1.14. Chalk-Harrod mechanism .. 15
Figure 1.15. Original hydrosilylation mechanism proposed by Lewis 16
Figure 1.16. Improved hydrosilylation reaction mechanism proposed by Lewis 17
Figure 1.17. Hydrosilylation of alkenes onto T$_8^H$.. 19
Figure 1.18. Hydrosilylation of vinylferrocene onto Q$_8^H$... 20
Figure 1.19. Synthesis of mono-functionalised POSS derivatives (Method 1) 21
Figure 1.20. Synthesis of mono-functionalised POSS derivatives (Method 2) 22
Figure 1.21. Synthesis of mono-functionalised POSS derivatives ... 22
Figure 1.22. Synthesis of mono-octene POSS .. 23
Figure 1.23. Synthesis of mono-oligo(ethylene oxide) hydroxysilsesquioxane 24
Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) 25
Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoate-co-3-hydroxyalkenoate] ... 26
Figure 1.26. Mono-functionalised incompletely condensed POSS 27
Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives ... 27
Figure 1.28. Synthesis of dissubstituted incompletely condensed silsesquioxane 28
Figure 1.29. Synthesis of octa(nitrophenyl)POSS ... 29
Figure 1.30. Synthesis of octa(aminophenyl)POSS .. 29
Figure 1.31. Bromination of octa(phenyl)POSS and subsequent Suzuki coupling 30
Figure 1.32. Radical bromanation of octa(vinyl)POSS .. 31
Figure 1.33. Methoxycarbonylation of octa(vinyl)POSS .. 31
Figure 1.34. UV addition of phosphanes to octa(vinyl)POSS ... 31
Figure 1.35. Diels Alder polymerisation of dodeca(cyclopentadienyl)POSS 32
Figure 1.36. Coordination of platinum through phosphine-functionalised POSS 32
Figure 1.37. Radical addition of thiols to octa(vinyl)POSS .. 33
Figure 1.38. Heck coupling of bromoaromatics with octa(vinyl)POSS 33
Figure 1.39. Arylation and dichlorocarbene addition to octa(vinyl)POSS 34
Figure 1.40. Silylative coupling and cross-metathesis of octa(vinyl)POSS 35
Figure 1.41. 1,3-dipolar cycloaddition of nitrene and nitrile oxides to mono(vinyl) and mono(styryl)POSS .. 35
Figure 2.1. C$_{60}$ cyclohexatriene and radialene subunits of C$_{60}$... 44
Figure 2.2. Pyrazoline, fulleroid and methanofullerene derivatives of C$_{60}$ 45
Figure 2.3. Possible isomers of iminofullerenes ... 46
Figure 2.4. Addition of alkyl azides to C$_{60}$... 46
Figure 2.5. Addition of stabilised α-halomalonate anions to C$_{60}$ 47
Figure 2.6. Addition of α-halomalonate to C₆₀...48
Figure 2.7. Addition of azomethine ylides to C₆₀ ..49
Figure 2.8. Five-level reverse saturable absorption mechanism ...51
Figure 2.9. Modified reverse saturable absorption mechanism ..52
Figure 2.10. Synthesis of 3-(cyclopentadienyl)alkyltriethoxysilane fullerene¹54
Figure 2.11. Synthesis of N-[3-(triethoxysilyl)propyl]-2-carboxethoxy fulleropyrrolidine55
Figure 2.12. Synthesis of triethoxysilyl undecyl fulleropyrrolidine55
Figure 2.13. Synthesis of N-(triethoxysilyl)propyl functionalised fulleropyrrolidine56
Figure 2.14. Synthesis of N-triethoxysilyl functionilised fulleropyrrolidine57
Figure 2.15. Synthesis of silica grafted methanofullerene..58
Figure 2.16. Numbering scheme of pyrrolidines ..59
Figure 2.17. Synthesis of mono-vinyl POSS (2.1, 2.2)...60
Figure 2.18. Synthesis of [2-(4-dimethylsilyl)phenyl]-1,3-dioxalane (2.3)62
Figure 2.19. Synthesis of mono-dioxalane POSS (2.4)..63
Figure 2.20. Synthesis of mono-aldehyde POSS (2.5, 2.6)..64
Figure 2.21. Synthesis of POSS-fulleropyrrolidines (2.7, 2.8)..65
Figure 2.22. Pyrroldine resonances in the ¹H NMR spectrum of POSS fulleropyrrolidine 2.7 in CDCl₃..66
Figure 2.23. Resonance structures of silyl-substituted benzaldehyde70
Figure 2.24. ¹³C NMR spectrum of POSS fulleropyrrolidine 2.7 in CDCl₃71
Figure 2.25. ²⁹Si NMR spectrum of POSS fulleropyrrolidine 2.7 in CDCl₃73
Figure 2.26. UV-Vis spectra of POSS fulleropyrrolidines 2.7 and 2.8 in toluene....................75
Figure 2.27. Fluorescence and phosphorescence of fullerenes..76
Figure 2.28. Fluorescence spectra of POSS fulleropyrrolidines 2.7 and 2.8 in toluene (λ_exc = 335 nm) ..76
Figure 2.29. Power limiting plot for C₆₀ ..78
Figure 2.30. Power limiting plot for POSS fulleropyrrolidine 2.7 ..78
Figure 2.31. Power limiting plot for POSS fulleropyrrolidine 2.8 ..79
Figure 2.32. Synthesis of mono-benzyl chloride POSS (2.9, 2.10).....................................80
Figure 2.33. Synthesis of mono aldehyde POSS (2.11, 2.12) ..82
Figure 2.34. ¹H NMR of mono-aldehyde POSS 2.11 in CDCl₃ ..83
Figure 2.35. Synthesis of POSS fulleropyrrolidines (2.13, 2.14)......................................84
Figure 2.36. ¹³C NMR of POSS fulleropyrrolidine 2.13 in CDCl₃88
Figure 2.37. ²⁹Si NMR of POSS fulleropyrrolidine 2.12 in CDCl₃89
Figure 2.38. UV-Vis absorption spectra of POSS fulleropyrrolidines 2.13 and 2.14 in toluene ...91
Figure 2.39. Emission spectra of POSS fulleropyrrolidines 2.13 and 2.14 in toluene92
Figure 2.40. Power limiting plot for POSS fulleropyrrolidine 2.13.....................................93
Figure 2.41. Power limiting plot of POSS fulleropyrrolidine 2.1493
Figure 2.42. Synthesis of literature POSS azides ...94
Figure 2.43. Synthesis of POSS azide (2.16) ..95
Figure 2.44. Synthesis of POSS iminofullerene (2.16)...97
Figure 2.45. ¹H NMR of POSS iminofullerene 2.16 in CDCl₃ ..98
Figure 2.46. ¹³C NMR of POSS iminofullerene 2.16 in CDCl₃ ..100
Figure 2.47. Open [5,6] and closed [6,6] iminofullerenes ..100
Figure 2.48. ²⁹Si NMR of POSS iminofullerene 2.16 in CDCl₃ ..101
Figure 2.49. UV-Vis spectra of POSS iminofullerene 2.16 in toluene103
Figure 2.50. Fluorescence spectrum of POSS iminofullerene 2.16 in toluene104
Figure 2.51. Power limiting plot of POSS iminofullerene 2.18 ..105
Figure 3.1. Benzene, naphthalene, biphenyl and perylene functional groups.......................111
Figure 3.2. Ethoxysilane substituted perylene derivatives ..112
Figure 3.3. Structure of Perylene Orange ...113
Figure 3.4. Synthesis of bis-(propyltriethoxysilyl)perylenediimide113
Figure 3.5. Self-assembly of bis(propyltriethoxysilyl)perylenediimide114
Figure 3.21. Succinimide, maleimide and phthalic imide functional groups

Figure 3.20. Synthesis of POSS perylene bis-imide (3.9)

Figure 3.19. Synthesis of biphenyl POSS bis-imide (3.8)

Figure 3.18. Synthesis of mono-naphthalic POSS imide (3.7)

Figure 3.17. Synthesis of octa-phthalic POSS imide (3.5)

Figure 3.16. Synthesis of mono-phthalic POSS imide (3.2)

Figure 3.15. Synthesis of octa-propylsuccinimide POSS

Figure 3.14. Synthesis of octa(chloroammoniumpropyl)POSS

Figure 3.13. Synthesis of mono-porphyrin POSS (4.3)

Figure 3.12. Synthesis of mono-pyridyl POSS (4.3)

Figure 3.11. Synthesis of isonicotinic acid chloride (4.2)

Figure 3.10. Synthesis of mono-phenyl POSS amide (4.1)

Figure 4.19. UV-Vis spectra of phthalic POSS imides 3.2, 3.3 and 3.5 in toluene

Figure 4.18. UV-Vis spectrum of mono-naphtha POSS imide 3.6 in toluene

Figure 4.17. Literature examples of mono-naphtha imides

Figure 4.16. UV-Vis spectrum of bis-naphtha POSS imide 3.7 in toluene

Figure 4.15. UV-Vis spectrum of mono-naphtha POSS imide 3.6 in toluene

Figure 4.14. Literature examples of mono-naphtha imides

Figure 4.13. UV-Vis spectrum of mono-porphyrin POSS 4.4 in CDCl

Figure 4.12. Literature examples of bis-naphtha imides

Figure 4.11. Structure of N-[3-(isobutylPOSS)propyl]bis(benzyloxybenzamide)

Figure 4.10. Synthesis of mono-phenyl POSS amide (4.1)

Figure 4.9. Synthesis of octa-(phenyl amide) POSS

Figure 4.8. Synthesis of Ru(TPP)(CO)(Rpy)

Figure 4.7. Synthesis of platinum functionalised POSS

Figure 4.6. Synthesis of POSS based ruthenium metaldendrimers

Figure 4.5. Synthesis of ruthenium functionalised POSS

Figure 4.4. Synthesis of porphyrin macrocycle

Figure 4.3. Literature biphenyl bis-imides

Figure 4.2. Synthesis of TPP

Figure 4.1. The unsubstituted porphyrin macrocycle

Figure 3.39. Unit cell diagram of perylene POSS imide 3.9

Figure 3.38. Single crystal x-ray structure of perylene POSS imide 3.9

Figure 3.37. Emission spectrum of mono-naphtha POSS imide 3.6 in toluene

Figure 3.36. Emission spectrum of bis-naphtha POSS imide 3.7 in toluene

Figure 3.35. Emission spectrum of bis-naphtha POSS imide 3.7 in toluene

Figure 3.34. Examples of mono-naphtha imides

Figure 3.33. Emission spectrum of mono-naphtha POSS imide 3.6 in toluene

Figure 3.32. Literature examples of mono-naphtha POSS imide 3.6 in toluene

Figure 3.31. Emission spectrum of perylene POSS imide 3.9 in toluene

Figure 3.30. Literature examples of mono-naphtha POSS imide 3.6 in toluene

Figure 3.29. Synthesis of mono-phthalic POSS imide 3.2 in CDCl

Figure 3.28. Literature examples of mono-naphtha POSS imide 3.2 in CDCl

Figure 3.27. Literature examples of mono-naphtha POSS imide 3.2 in CDCl

Figure 3.26. UV-Vis spectrum of bis-naphtha POSS imide 3.7 in toluene

Figure 3.25. Literature examples of mono-naphtha POSS imide 3.2 in CDCl

Figure 3.24. Literature examples of mono-naphtha imides

Figure 3.23. UV-Vis spectrum of mono-naphtha POSS imide 3.6 in toluene

Figure 3.22. UV-Vis spectra of perylene POSS imides 3.2, 3.3 and 3.5 in toluene

Figure 3.21. Succinimide, maleimide and phthalic imide functional groups

Figure 3.20. Synthesis of POSS perylene bis-imide (3.9)

Figure 3.19. Synthesis of biphenyl POSS bis-imide (3.8)

Figure 3.18. Synthesis of mono-naphthalic POSS imide (3.7)

Figure 3.17. Synthesis of octa-phthalic POSS imide (3.5)

Figure 3.16. Synthesis of bis-naphthalic POSS imide (3.7)

Figure 3.15. Synthesis of mono-naphthalic POSS imide (3.6)

Figure 3.14. Synthesis of octa-phthalic POSS imide (3.5)

Figure 3.13. Synthesis of bis-phthalic POSS imide (3.3)

Figure 3.12. Synthesis of mono-phthalic POSS imide (3.2)
Figure 4.16. Aromatic region in ^{13}C NMR spectrum of mono-porphyrin POSS 4.4 in CDCl$_3$...

Figure 4.17. ^{29}Si NMR of mono-porphyrin POSS (4.4) ..183
Figure 4.18. UV-Vis spectrum of POSS porphyrin 4.4 in dichloromethane184
Figure 5.1. Synthesis of octa-pyrene substituted POSS ..190
Figure 5.2. Synthesis of pyrene acid chloride (5.1) ...193
Figure 5.3. Synthesis of mono-pyrene POSS (5.2)...193
Figure 5.4. ^1H NMR of mono-pyrene POSS 5.2 (pictured) in CDCl$_3$194
Figure 5.5. ^{13}C NMR of mono-pyrene POSS 5.2 (pictured) in CDCl$_3$197
Figure 5.6. ^{29}Si NMR of mono-pyrene POSS 5.2 in (pictured) CDCl$_3$.................................197
Figure 5.7. UV-VIS spectrum of mono-pyrene POSS 5.2 and pyrene in toluene.................199
Figure 5.8. Emission spectrum of mono-pyrene POSS 5.2 in toluene ($\lambda_{exc} = 365\text{nm}$)200
Figure 5.9. Oligo-ether functionalised pyrene ...200
Figure 6.1. Structure of 4-Bromophenyldioxalane ..206
Figure 6.2. Structure of 2-(4-(Dimethylsilyl)phenyl)-1,3-dioxalane (2.3)207
Figure 6.3. Structure of mono-vinyl POSS (2.1, 2.2) ...208
Figure 6.4. Structure of mono-dioxalane POSS (2.4) ..209
Figure 6.5. Structure of mono-aldehyde POSS (2.5, 2.6) ..210
Figure 6.6. Structure of POSS fulleropyrrolidines (2.7, 2.8) ..211
Figure 6.7. Structure of mono-benzyl chloride POSS (2.9, 2.10) ..213
Figure 6.8. Structure of mono-aldehyde POSS (2.11, 2.12) ...214
Figure 6.9. Structure of POSS Fulleropyrrolidines (2.13, 2.14) ..216
Figure 6.10. Structure of mono-benzyl azide POSS (2.17) ..217
Figure 6.11. Structure of POSS iminofullerene (2.16) ..218
Figure 6.12. Structure of (3-aminopropyl)POSS (3.1) ..219
Figure 6.13. Structure of octa(3-chloroammoniumpropyl)POSS (3.4)219
Figure 6.14. Structure of mono-phthalic POSS imide (3.2) ..220
Figure 6.15. Structure of bis-phthalic POSS imide (3.3) ..221
Figure 6.16. Structure of octa-phthalic POSS imide (3.5) ..222
Figure 6.17. Structure of mono-naphthalic-POSS imide (3.6) ..223
Figure 6.18. Structure of bis-naphthalic-POSS imide (3.7) ..223
Figure 6.19. Structure of biphenyl POSS imide (3.8) ..224
Figure 6.20. Structure of perylene POSS imide (3.9) ...225
Figure 6.21. Structure of mono-phenyl POSS (4.1) ...226
Figure 6.22. Structure of isonicotinic acid chloride (4.2) ...226
Figure 6.23. Structure of mono-pyridyl POSS (4.3) ...227
Figure 6.24. Structure of mono-porphyrin POSS (4.4) ..228
Figure 6.25. Structure of pyrene acid chloride ...229
Figure 6.26. Structure of mono-pyrene POSS (5.2) ...230
LIST OF TABLES

Table 1.1. Yields of T₄ silesquioxane cages obtained from the corresponding trilkoxy silane with tetrabutylammonium fluoride ..9

Table 2.1. ¹H NMR resonances of POSS fulleropyrrolidines and precursor compounds (synthetic pathway 1) ..61

Table 2.2. ¹³C NMR resonances of POSS fulleropyrrolidines and precursor compounds (synthetic pathway 1) ..68

Table 2.3. ²⁹Si NMR of POSS fulleropyrrolidines and precursor compounds ..72

Table 2.4. High resolution ESI mass spectrometry results of POSS fulleropyrrolidines and precursor compounds ..73

Table 2.5. Elemental analysis of POSS fulleropyrrolidines ..74

Table 2.6. ¹H NMR of POSS fulleropyrrolidines and precursor compounds (synthetic pathway 2) ..81

Table 2.7. ¹³C NMR of POSS fulleropyrrolidines and precursor compounds (synthetic pathway 2) ..86

Table 2.8. ²⁹Si NMR of POSS fulleropyrrolidines and precursor compounds ..89

Table 2.9. High resolution ESI mass spectrometry results of POSS fulleropyrrolidines and precursors (synthetic pathway 2) ..90

Table 2.10. Elemental analysis of POSS fulleropyrrolidines ..90

Table 2.11. ¹H NMR of POSS iminofullerenes and precursor compounds ...95

Table 2.12. ¹³C NMR of POSS iminofullerenes and precursor compounds ..99

Table 2.13. ²⁹Si NMR of POSS iminofullerenes and precursor compounds ..101

Table 2.14. ESI mass spectrometry of POSS iminofullerenes and precursor compounds ..102

Table 3.1. FTIR of POSS Imides ...118

Table 3.2. ¹H NMR of POSS imides ..119

Table 3.3. ¹³C NMR of POSS imides ...129

Table 3.4. ²⁹Si NMR of POSS imides ...134

Table 3.5. ESI mass spectroscopy of POSS imides ...135

Table 3.6. Elemental analysis of POSS imides ...136

Table 3.7. UV-Vis data of bis-naphthalic imides ...140

Table 3.8. UV-Vis data of various N-substituted perylenes in CHCl₃ ..144

Table 3.9. Fluorescence data of various N-substituted perylenes in chloroform ..149

Table 3.10. X-ray parameters ...150

Table 3.11. Bond distances of POSS perylene and literature perylene bis-imides ...153

Table 3.12. Bond Angles of bis(POSS)perylenediimide ...154

Table 3.13. Bond distances and angles of POSS crystal structures ...155

Table 4.1. ¹H NMR of POSS porphyrin and precursor compounds ..173

Table 4.2. ¹³C NMR of POSS porphyrin and precursor compounds ..179

Table 4.3. ²⁹Si NMR of POSS porphyrin and precursor compounds ..182

Table 4.4. ESI mass spectrometry of POSS porphyrin and precursor compounds ..183

Table 4.5. Elemental analysis POSS porphyrin and precursor compounds ..183

Table 5.1. ¹H NMR of mono-pyrene POSS (5.2) and precursor compounds ..192

Table 5.2. ¹³C NMR of mono-pyrene POSS (5.2) and precursor compounds ..195
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>(epsilon) molar extinction coefficient</td>
</tr>
<tr>
<td>λ</td>
<td>(lambda) wavelength</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>δ</td>
<td>(delta) chemical shift in ppm</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>$^xJ_{A-B}$</td>
<td>coupling constant between nuclei A and B over x bonds in Hz</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform InfraRed</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>UV-VIS</td>
<td>Ultraviolet visible</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Unoccupied Molecular Orbital</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>Cy</td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>Cp</td>
<td>Cyclopentyl</td>
</tr>
<tr>
<td>λ_{max}</td>
<td>wavelength of maximum absorption</td>
</tr>
<tr>
<td>λ_{exc}</td>
<td>wavelength of excitation</td>
</tr>
<tr>
<td>Φ_F</td>
<td>quantum yield</td>
</tr>
<tr>
<td>κ</td>
<td>dielectric constant</td>
</tr>
<tr>
<td>M_n</td>
<td>mean molecular weight</td>
</tr>
<tr>
<td>o</td>
<td>ortho</td>
</tr>
<tr>
<td>m</td>
<td>meta</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>vs</td>
<td>very strong</td>
</tr>
<tr>
<td>s</td>
<td>strong</td>
</tr>
<tr>
<td>m</td>
<td>medium</td>
</tr>
<tr>
<td>w</td>
<td>weak</td>
</tr>
</tbody>
</table>