Biomimetic Approaches to the Synthesis of Polyketide Derived Marine Natural Products; (-)-Maurenone and the Spiculoic Acids

A Thesis submitted for the fulfilment of the degree of

Doctor of Philosophy

Julia S. Crossman
B.Sc. (Hons), B.Tech. (Forensic and Analytical Chemistry)

at
Flinders University

The Faculty of Science and Engineering
School of Chemistry, Physics and Earth Sciences

September 2007
Contents

Abstract iv
Declaration viii
Acknowledgements ix
Publications and Presentations x
Abbreviations xi

Chapter 1 Introduction ... 1

1.1 Marine Natural Products ... 1
 1.1.1 Marine Toxins ... 2
 1.1.2 Marine Biomedicinals ... 2
 1.1.3 Chemical Ecology ... 5

1.2 Polyketides .. 7
 1.2.1 Cyclisation Modes .. 11
 1.2.2 Total Synthesis of Polyketide Derived Marine Natural Products 17
 1.2.3 Maurenone .. 19
 1.2.4 The Spiculoic Acids ... 20

1.3 Carbon to Carbon Bond Forming Reactions 22
 1.3.1 The Aldol Reaction .. 23
 1.3.1.1 π−Facial Selectivity of the Aldehyde 26
 1.3.1.2 Controlling the Enolate Geometry 28
 1.3.1.3 π-Facial Selectivity of the Enolate ... 30
 1.3.1.4 Reagent Control in Stereoselective Aldol Reactions 38
 1.3.1.5 Double Stereodifferentiating Reactions 39
 1.3.1.6 Summary of the Aldol Reaction ... 42
 1.3.2 The Wittig Olefination Reaction ... 42
 1.3.3 The Horner-Waddsworth-Emmons Olefination Reaction 46
 1.3.4 The Julia Olefination Reaction .. 48
 1.3.4.1 Benzothiazole-2-yl (BT) Sulfones 51
 1.3.4.2 Pyridin-2-yl (PYR) sulfones .. 52
 1.3.4.3 1-Phenyl-1H-tetrazole-5-yl (PT) sulfones 52
 1.3.4.4 tert-Butyl-1H-tetrazole-5-yl (TBT) sulfones 53
 1.3.5 The Diels-Alder Reaction .. 53
 1.3.5.1 The Mechanism of the Diels-Alder Reaction 57
 1.3.5.2 Imparting Stereocatalytic Control to the Diels-Alder Reaction 59
 1.3.5.3 The Diels-Alder Cycloaddition Reaction in Natural Product Synthesis/Biosynthesis 59
 1.3.5.4 Enzyme Catalysis of the Diels-Alder Reaction 60
 1.3.6 Organometallic Cross-Coupling Reactions 65
 1.3.6.1 The Catalytic Cycle .. 66
 1.3.6.2 Palladium-Catalysed Cross-coupling Reactions in Natural Product Synthesis 67
 1.3.7 Protecting Groups ... 75

1.4 Proposed Synthetic Approaches to Maurenone and the Spiculoic Acids 77
 1.4.1 Maurenone ... 77
 1.4.2 Spiculoic Acids .. 78

1.5 Summary .. 80

Chapter 2 Total Synthesis and Structural Elucidation of (-)-Maurenone 81

2.1 Siphonariids, a Source of Unusual Polyketide Secondary Metabolites 81

2.2 Isolation and Structural Assignment of Maurenone 82
 2.2.1 Research Aims .. 83
 2.2.2 Retrosynthetic Analysis of the Eight Stereoisomers 84
Chapter 2
2.3 A Convergent Approach to Total Synthesis: Utilising Common Aldol Fragments

2.3.1 Constructing the Six Building Blocks 87
2.3.1.1 Synthesis of Common Precursors; The Lactate Derived α-Chiral Ketones 87
2.3.1.2 Synthesis of the Ketone Fragments 122 and 123 88
2.3.1.3 Synthesis of the anti-Aldehyde Fragments 118 and 119 90
2.3.1.4 Synthesis of the syn-Aldehyde Fragments 120 and 121 91
2.3.2 Assembling the Eight Isomers: Aldol Coupling and Cyclisation 93

2.4 Natural Product Spectral Comparison 100
2.5 Conclusion 107

Chapter 3
Introduction to the Spiculoic Acids 109

3.1 Marine Sponges, a Source of Unique Secondary Metabolites 109
3.1.1 Isolation of Bioactive Marine Polyketides; the Spiculoic Acids 110
3.1.2 Biogenesis of the Spiculoic Acids 111
3.1.3 The Plakotenins; a Structurally Related Family of Natural Products 115

3.2 A Biomimetic Approach to the Total Synthesis of the Spiculoic Acids 118
3.2.1 Synthetic Studies Towards the Spiculoic Acids 119
3.2.1.1 Synthesis of a Model System 119
3.2.1.2 A Total Synthesis of Spiculoic Acid A 122
3.2.2 Design of a Model System 123

3.3 Conclusion 125

Chapter 4
The Model System; Synthesis and Stereochemical Assignment of the IMDA Cycloadducts 127

4.1 Retrosynthetic Analysis of the Model System 127

4.2 Synthesis of Model System One 129
4.2.1 Synthesis of Aldehyde 214 129
4.2.2 Synthesis of the Linear Precursors (2E,5S)-114 and (2Z,5S)-114 and Subsequent Cyclisation 131

4.3 Stereochemical Assignment of the IMDA Adducts 139
4.3.1 Modelling Studies 141
4.3.2.1 Diels-Alder Adducts from Linear Precursor (2E,5S)-114 143
4.3.2.2 Diels-Alder Adducts from Linear Precursor (2Z,5S)-114 151
4.3.3 The Affect of the Dienophile Geometry on the Stereochemical Outcome of the IMDA Reaction 159

4.4 Synthesis of Model System Two 160
4.4.1 Synthesis of Aldehyde 253 160
4.4.2 Synthesis of the Linear Precursor (3E,5R)-114 and Subsequent Cyclisation 167
4.4.3 Model System Two – Stereochemical Assignment of Cycloadducts 344 and 345 172
4.4.3.1 Assignment of the Major D.-A. Adduct 274 173
4.4.3.2 Assignment of the Minor D.-A. Adduct 275 179
4.4.4 The Affect of the Configuration of the C5 Stereocentre on the Stereochemical Outcome of the IMDA Reaction 183

4.5 Conclusions - Extension to the Spiculoic Acids and the Plakotenins 185

Chapter 5
Extension of the Model Synthesis to the Spiculoic Acids 189

5.1 Extension of the Model Systems to the Natural Products 189
5.1.1 Retrosynthetic Analysis 192
5.1.2 Synthesis of Aldehyde 295 197
5.1.3 The Wittig/H.W.E. Olefination Approach to the Triene 197
5.1.4 The Julia Olefination Approach to the Triene 199
5.1.4.1 Future Directions: Alternative “Modified” Julia Olefination Reactions 206
5.1.5 The Palladium-Catalysed Cross-Coupling Approach to the Triene 207
5.1.5.1 Synthesis of Vinyl Iodide 338 209
Abstract

This thesis describes the total synthesis of the polyketide derived marine natural product (-)-maurenone (14) and synthetic studies of a model system for the marine polyketides, the spiculoic acids (20, 22-24). A biomimetic approach involving cyclisation of linear polyketide precursors to install the complex chemical frameworks was employed.

Maurenone is a polypropionate derived metabolite isolated from pulmonate molluscs collected off the coast of Costa Rica. While structural assignment following isolation revealed a relatively uncommon tetra-substituted dihydropyrone moiety the only stereochemical information deduced was the trans-relative relationship between the C8 and C9 protons. The total synthesis of a series of eight stereoisomeric putative structures was achieved in order to assign the stereochemistry of (-)-maurenone (14), as that depicted above. A time and cost efficient strategy was developed utilising common intermediates providing access to the eight stereoisomeric structures in a convergent manner. Six key fragments, four aldehydes (109) and two ketones (110), were synthesised using highly diastereoselective syn- and anti-boron aldol reactions and were coupled using a lithium-mediated aldol reaction. Trifluoroacetic acid-promoted cyclisation/dehydration enabled installation the γ-dihydropyrone ring. All eight isomers of one enantiomeric series were synthesised by coupling two ketones with each of four aldehydes. By comparison of the NMR data for the eight isomers with that reported for the natural product, the relative stereochemistry was established as shown. The (-)-enantiomer of maurenone was synthesised in nine linear steps (13 % overall yield) from (R)-2-benzylpentan-3-one ((R)-40) and (R)-2-benzoyloxypentan-3-one ((R)-39).
The spiculoic acid family of polyketide derived natural products, isolated from *plakortis* sponges, possess a unique [4.3.0]-bicyclic core which is proposed to be formed via an enzyme catalysed Intramolecular Diels-Alder (IMDA) cycloaddition reaction of linear polyene precursors 25. Model linear precursors (114), possessing various olefin geometries at C2 and both stereochemical orientations of the C5 stereocentre, were synthesised in order to examine stereoselectivity of the thermally induced IMDA cycloaddition reaction.
The two alternative C4-C6 stereotriads of the linear precursors \textbf{114} were achieved by employing highly diastereoselective substrate-controlled aldol reactions; an \textit{anti}-boron aldol reaction, controlled by the facial preference of (\textit{R})-2-benzoyloxypentan-3-one (\textbf{(R)-39}), and a \textit{syn}-titanium aldol reaction, under the control of chiral N-acylthiazolidinethione (\textbf{(R)-43a}). The diene and dienophile moieties were installed using either standard Wittig, H.W.E. or “modified” Julia olefination reactions.

A thorough stereochemical assignment of the cycloadducts of the thermally induced IMDA reaction of each linear precursor was accomplished employing 2D NMR techniques. Comparison of the stereochemistry of each of the cycloadducts with the spiculoic acids revealed that the linear precursor \textit{(2E,5S)-114} produced a cycloadduct \textbf{232} with stereochemistry analogous to the natural products in 94 \% diastereoselectivity. Thus, a synthetic approach to the spiculoic acids \textit{via} synthesis of a linear precursor \textbf{285} possessing a TBS ether at C5 in the \textit{S} configuration was proposed. Unfortunately, problems encountered in the synthesis of the proposed linear precursors to the spiculoic acids ultimately prevented the total synthesis from being achieved.
OTBS

\(\text{CO}_2\text{Et} \)

94 % ds

(2E,5S)-114

\(\text{CO}_2\text{Et} \)

OTBS

H

H

(2)

E

S

\(-114 \quad 232 \)

R3

R2

R1

O

CO2H

spiculoic acids

\(\text{OTBS} \)

P = suitable carboxylic acid precursor

R3

R2

R1

\(\text{CO}_2\text{H} \)

285

\(\text{P} = \text{suitable carboxylic acid precursor} \)

spiculoic acids

R3

R2

R1

\(\text{CO}_2\text{H} \)
Declaration

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Julia S. Crossman
24th September, 2007
Acknowledgements

I would like to acknowledge the support and guidance provided by my supervisor, Dr. Michael Perkins, throughout my research projects. His advice, suggestions and unyielding enthusiasm were much appreciated, reigniting my passion in the wake of setbacks and keeping me focused on the targets.

The efforts of the academic and technical staff in the School of Chemistry, Physics and Earth Sciences at Flinders University in keeping the equipment in working order and laboratories stocked with chemicals and glassware cannot be overlooked. The staff of the chemical store deserve individual mention for placing extra orders when I required chemicals urgently. Dr. Martin Johnston and Mr. Phil Clements (University of Adelaide) also warrant special mention for their tireless efforts in maintaining the NMR spectrometers and for their assistance in acquiring the large numbers of spectra of all of my isomers!

The long and bumpy road towards a PhD would have been longer, bumpier and much less enjoyable without the support and friendship of my fellow students over the years. In particular thanks to my lab partners; Milena Kasprzyk, Helen Wray and Claire Gregg who made our lab an enjoyable place to come to work in each day. Thanks also to Rachel Brown, David Jeffery, Troy Lister, Eric Dennis, Simon Mathew, Dani Lyons and Jozef Hodel for their friendly faces, willingness to share chemicals, equipment and advice and for their idiosyncrasies which made the department an entertaining and unique place to work.

For financial support, I would like acknowledge the Australian Government for providing me with an Australian Postgraduate Award, the Australian Research Council for project funding and Flinders University for an Elaine Martin Fund Travel Scholarship.

Finally, I am indebted to my family and Damian for their endless love and support during this arduous journey. Their unwavering belief in my abilities kept me on track and helped me to survive the rollercoaster ride that is a PhD. Thank you for knowing intuitively when to provide distractions, laughs or a shoulder to cry on.
Publications and Presentations

The following is a list of publications that have resulted from research outlined in this thesis and presentations that were delivered at various symposia.

Publications

Presentations

(Awarded the IUPAC Poster Prize and the Geoffrey I. Feutrill Award for best student poster.)
Abbreviations

Δ heat
AcCl acetyl chloride
AcOH acetic acid (glacial)
Ac₂O acetic anhydride
apt apparent
9-BBN 9-borabicyclo[3.3.1]nonane
BF₃.OEt₂ boron trifluoride-diethyl ether complex
BH₃.SMe₂ borane-dimethyl sulfide complex
BHT butylated hydroxytoluene
binap 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
b.p. boiling point
Bn benzyl
BT benzothiazole-2-yl
Bu₂BOTf dibutylboron triflate
°BuLi butyllithium
¹BuLi tert-butyllithium
Bz benzoyl
c concentration (g/100 mL)
cat. catalytic
CH₂Cl₂ dichloromethane
COSY homonuclear CORrelation Spectroscopy
Cp₂ZrCl₂ bis(cyclopentadienyl)zirconium(IV) dichloride
m-CPBA meta-chloroperbenzoic acid
CuBr.DMS copper(I) bromide dimethylsulfide complex
δ chemical shift
dba dibenzylideneacetone
DCE 1,2-dichloroethane
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DIAD diisopropyl azodicarboxylate
DIBAL diisobutylaluminium hydride
DMAP 4-(N,N-dimethylamino)pyridine
DME 1,2-dimethoxyethane
DMF N,N-dimethylformamide
DMPU 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>dppe</td>
<td>diphenylphosphino ethane</td>
</tr>
<tr>
<td>dppf</td>
<td>diphenylphosphino ferrocene</td>
</tr>
<tr>
<td>ds</td>
<td>diastereoselectivity</td>
</tr>
<tr>
<td>EI</td>
<td>electron impact</td>
</tr>
<tr>
<td>EIMS</td>
<td>electron impact mass spectroscopy (spectrum)</td>
</tr>
<tr>
<td>eq.</td>
<td>equivalent (s)</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EtCOCl</td>
<td>propionyl chloride</td>
</tr>
<tr>
<td>Et2O</td>
<td>diethyl ether</td>
</tr>
<tr>
<td>(EtO)2CO</td>
<td>diethyl carbonate</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple Bond Connectivity</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoramide</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear Multiple Quantum Coherence</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectroscopy (spectrum)</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>Icp</td>
<td>isopinocamphenyl</td>
</tr>
<tr>
<td>IBX</td>
<td>2-iodoxybenzoic acid</td>
</tr>
<tr>
<td>IMDA</td>
<td>intramolecular Diels-Alder</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant (Hz)</td>
</tr>
<tr>
<td>KHMDS</td>
<td>potassium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>LiHMDS</td>
<td>lithium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Unoccupied Molecular Orbital</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MeCN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole</td>
</tr>
<tr>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>m.p.</td>
<td>melting point</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>MPM</td>
<td>methoxyphenylmethyl</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>NIS</td>
<td>N-iodosuccinimide</td>
</tr>
<tr>
<td>NMO</td>
<td>N-methylmorpholine-N-oxide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser and Exchange Spectroscopy</td>
</tr>
<tr>
<td>OAc</td>
<td>acetate</td>
</tr>
<tr>
<td>OTf</td>
<td>trifluoromethanesulfonate (trilate)</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>PMB</td>
<td>para-methoxybenzyl</td>
</tr>
<tr>
<td>PPh₃</td>
<td>triphenylphosphine</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium para-toluenesulfonic acid</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>iPrOH</td>
<td>isopropanol</td>
</tr>
<tr>
<td>PT</td>
<td>1-phenyl-1H-tetrazole-5-yl</td>
</tr>
<tr>
<td>Pyr</td>
<td>pyridine</td>
</tr>
<tr>
<td>PYR</td>
<td>pyridin-2-yl</td>
</tr>
<tr>
<td>Rₚ</td>
<td>retention factor</td>
</tr>
<tr>
<td>ROESY</td>
<td>Rotating frame Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>R.T. or RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>sat.</td>
<td>saturated</td>
</tr>
<tr>
<td>SM</td>
<td>starting material</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBAI</td>
<td>tetrabutylammonium iodide</td>
</tr>
<tr>
<td>TBATFA</td>
<td>tetrabutylammonium trifluoroacetate</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butylidiphenylsilyl</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butylidimethylsilyl</td>
</tr>
<tr>
<td>TBSOTf</td>
<td>tert-butylidimethylsilyl trifluoromethanesulfonate</td>
</tr>
<tr>
<td>TBT</td>
<td>tert-butyl-1H-tetrazole-5-yl</td>
</tr>
<tr>
<td>TES</td>
<td>triethylsilyl</td>
</tr>
<tr>
<td>TESOTF</td>
<td>triethylsilyl trifluoromethanesulfonate</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TfOH</td>
<td>trifluoromethanesulfonic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>triisopropylsilyl</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>trimethylethlenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TOCSY</td>
<td>TOtal Correlation SpectroscopY</td>
</tr>
<tr>
<td>TPAP</td>
<td>tetrapropylammonium perruthenate</td>
</tr>
<tr>
<td>p-TsOH</td>
<td>para-toluenesulfonic acid</td>
</tr>
</tbody>
</table>