Spectral shift function
in von Neumann algebras

Nurulla AZAMOV

A Thesis presented for the Degree
of Doctor of Philosophy

in

School of Informatics and Engineering
Faculty of Science and Engineering
Flinders University

January 14, 2008
Declaration

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Nurulla Azamov, Candidate
Acknowledgements

I would like to thank my supervisors Dr. Fyodor Sukochev and Professor Peter Dodds for their guidance and advice.

I also would like to thank Flinders University and the School of Informatics and Engineering for the opportunity to be a postgraduate student.
Abstract

The main subsect of this thesis is the theory of Lifshits-Kre˘ın spectral shift function in semifinite von Neumann algebras and its connection with the theory of spectral flow. Main results are an analogue of the Kre˘ın trace formula for semifinite von Neumann algebras, the semifinite analogue of the Birman-Solomyak spectral averaging formula, a connection between the spectral shift function and the spectral flow and a Lidskii’s type formula for Dixmier traces. In particular, it is established that in the case of operators with compact resolvent, the spectral shift function and the spectral flow are identical notions.
Contents

Introduction viii

1 Preliminaries 1

1.1 Operators in Hilbert space 1
 1.1.1 Notation .. 1
 1.1.2 Topologies of $B(\mathcal{H})$ 2
 1.1.3 Self-adjoint operators 3
 1.1.4 Numerical range 5
 1.1.5 The Bochner integral 6

1.2 Fréchet derivative 7

1.3 von Neumann algebras 9
 1.3.1 Basic properties of von Neumann algebras 9
 1.3.2 Projections in von Neumann algebras 10
 1.3.3 Semifinite von Neumann algebras 13
 1.3.4 Operators affiliated with a von Neumann algebra ... 14
 1.3.5 Generalized s-numbers 14
 1.3.6 Non-commutative L^p-spaces 18
 1.3.7 Holomorphic functional calculus 20
 1.3.8 Invariant operator ideals in semifinite von Neumann algebras .. 22
1.4 Integration of operator-valued functions .. 22
1.5 τ-Fredholm operators ... 28
 1.5.1 Definition and elementary properties of τ-Fredholm operators 28
 1.5.2 The semifinite Fredholm alternative 29
 1.5.3 The semifinite Atkinson theorem .. 32
 1.5.4 Properties of τ-Fredholm operators 37
 1.5.5 Skew-corner τ-Fredholm operators 39
 1.5.6 Essential codimension of two projections 44
 1.5.7 The Carey-Phillips theorem ... 46
1.6 Spectral flow ... 47
1.7 Fuglede-Kadison’s determinant .. 53
 1.7.1 de la Harpe-Scandalis determinant 53
 1.7.2 Technical lemmas .. 56
 1.7.3 Definition of Fuglede-Kadison determinant and its properties 57
1.8 The Brown measure ... 65
 1.8.1 Weyl functions .. 65
 1.8.2 The Weierstrass function ... 68
 1.8.3 Subharmonic functions ... 69
 1.8.4 Technical results .. 73
 1.8.5 The Brown measure ... 75
 1.8.6 The Lidskii theorem for the Brown measure 76
 1.8.7 Additional properties of the Brown measure 80
2 Dixmier trace .. 85
 2.1 Dixmier trace ... 85
 2.1.1 The Dixmier traces in semifinite von Neumann algebras 85
CONTENTS

2.1.2 Measurability of operators 90

2.2 Lidskii formula for Dixmier traces 93
 2.2.1 Spectral characterization of sums of commutators 93
 2.2.2 The Lidskii formula for the Dixmier trace 94

3 Spectral shift function 101
 3.1 SSF for trace class perturbations 101
 3.1.1 Krein’s trace formula: resolvent perturbations 103
 3.1.2 The Krein trace formula: general case 112
 3.2 Multiple operator integrals . 114
 3.2.1 BS representations . 114
 3.2.2 Multiple operator integrals 118
 3.3 Fréchet differentiability . 122
 3.4 Spectral averaging . 127

4 Spectral flow 130
 4.1 Preliminary results . 130
 4.1.1 Self-adjoint operators with \(\tau\)-compact resolvent . . . 131
 4.1.2 Difference quotients and double operator integrals 133
 4.1.3 Some continuity and differentiability properties of opera-
tor functions . 135
 4.1.4 A class \(\mathcal{F}^{a,b}(\mathcal{N},\tau)\) of \(\tau\)-Fredholm operators 138
 4.2 Spectral shift function . 142
 4.2.1 The unbounded case . 142
 4.2.2 The bounded case . 149
 4.3 Spectral flow . 150
 4.3.1 The spectral flow function 150
 4.3.2 Spectral flow one-forms: unbounded case 151
Introduction

Let H_0 and H_1 be two self-adjoint operators. Then the spectral shift function for the pair H_0, H_1 can be defined as any function ξ such that, for any compactly supported smooth function f, the equality

$$\text{Tr}(f(H_1) - f(H_0)) = \int_{-\infty}^{\infty} f'(\lambda) \xi(\lambda) \, d\lambda$$

(1)

holds, provided that the difference $f(H_1) - f(H_0)$ is trace class. This formula is called the trace formula of I. M. Lifshits-M. G. Krein.

The notion of the spectral shift function was introduced in 1952 by the physicist I. M. Lifshits [Lif]. Lifshits considered the perturbation of a self-adjoint operator by a one-dimensional perturbation. He defined the spectral shift function $\xi(\lambda)$ by the formula

$$\xi(\lambda) = \text{Tr}(E_{\lambda}^{H_1} - E_{\lambda}^{H_0}),$$

where E_{λ}^{H} is the spectral projection of a self-adjoint operator H, corresponding to the half-line $(-\infty, \lambda)$. Acting formally, one can recover the trace formula (1) from this definition in the following way:

$$\text{Tr}(f(H_1) - f(H_0)) = \text{Tr} \left(\int f(\lambda) \, dE_{\lambda}^{H_1} - \int f(\lambda) \, dE_{\lambda}^{H_0} \right)$$

$$= \text{Tr} \left(\int f(\lambda) \, d(E_{\lambda}^{H_1} - E_{\lambda}^{H_0}) \right) = \int f(\lambda) \, d\text{Tr} \left(E_{\lambda}^{H_1} - E_{\lambda}^{H_0} \right)$$

$$= \int f'(\lambda) \text{Tr} \left(E_{\lambda}^{H_1} - E_{\lambda}^{H_0} \right) \, d\lambda = \int f'(\lambda) \xi(\lambda) \, d\lambda.$$

The difficulty with this argument is that, apart of its formality, the difference

$$E_{\lambda}^{H_1} - E_{\lambda}^{H_0}$$

(2)

is not necessarily trace class even for one-dimensional perturbations. This was
shown by M.G. Kreĭn [Kr]. Kreĭn considered integral operators

\[H_0 f(x) = \int_0^\infty k_0(x, y) f(y) \, dy, \]
\[H_1 f(x) = \int_0^\infty k_1(x, y) f(y) \, dy, \]
on the Hilbert space \(L^2(0, \infty) \) with kernels

\[k_0(x, y) = \begin{cases} \frac{1}{2} (e^{x-y} - e^{-x-y}), & \text{if } 0 \leq x \leq y, \\ \frac{1}{2} (e^{-x+y} - e^{-x-y}), & \text{if } 0 \leq y \leq x, \end{cases} \]
\[k_1(x, y) = \begin{cases} \frac{1}{2} (e^{x-y} + e^{-x-y}), & \text{if } 0 \leq x \leq y, \\ \frac{1}{2} (e^{-x+y} + e^{-x-y}), & \text{if } 0 \leq y \leq x, \end{cases} \]
respectively. In this case the perturbation \(V = H_1 - H_0 \) is a one-dimensional operator \(\langle \cdot, \varphi \rangle \varphi \), where \(\varphi(x) = e^{-x} \). Kreĭn showed that (2) is an integral operator with kernel

\[\frac{-2 \sin \sqrt{\lambda} (x + y)}{\pi (x + y)}, \]
and that it is not a compact operator.

Recently, V. Kostrykin and K.A. Makarov [KM] showed that, in this case, for all \(\lambda \in (0, 1) \), the spectrum of (2) is purely absolutely continuous and is equal to \([-1, 1]\). The general nature of the difference (2) was established in [Pu]. A.B. Pushnitski proved that the essential spectrum of (2) is equal to \([-a, a]\), where \(a = \frac{1}{2} \| S(\lambda; H_1, H_0) - 1 \| \) and \(S(\lambda; H_1, H_0) \) is the scattering matrix of the pair \(H_0, H_1 \). As was noted by Kreĭn, the operators \(H_0 \) and \(H_1 \) are actually the resolvents of the Dirichlet and Neumann one-dimensional Laplacian \(\frac{d^2}{dx^2} \) at the spectral point \(-1\). A free one-dimensional particle on \((0, \infty)\) undergoes a phase shift equal to \(\pi \) at 0 when one changes the Dirichlet boundary condition to the Neumann boundary condition. So, in this case \(S(\lambda) = e^{i\pi} = -1 \) and the result of Kostrykin-Makarov immediately follows from Pushnitski’s result.

In [Kr] M.G. Kreĭn created the mathematical theory of the spectral shift function. He proved that if the perturbation \(V = H_1 - H_0 \) is trace class, then there exists a unique (up to a set of Lebesgue measure zero) summable function \(\xi(\cdot) \) such that, for a class of admissible functions, which includes compactly supported functions \(f \in C^2(\mathbb{R}) \), the trace formula (1) holds. Surprisingly, for \(f \in C^1_0(\mathbb{R}) \), the difference \(f(H_1) - f(H_0) \) is not necessarily trace class [Far].

The method of proof which Kreĭn used was to establish the trace formula first for one-dimensional perturbations, after that, for finite-dimensional perturbations, and finally to use an approximation argument for general trace class perturbations. The major step of this proof was the first step, i.e. the case of one-dimensional perturbation. Kreĭn showed that for one-dimensional perturbations the perturbation determinant

\[\det(1 + V(H_0 - z)^{-1}) \]
INTRODUCTION

satisfies the conditions of a theorem from complex analysis, more precisely, that it is a Herglotz function and behaves like \(\frac{1}{y} \) for large values of \(y = \text{Im } z \).

One of the aims of this thesis is to establish the analogue of the Lifshits-Kreĭn theory for general semifinite von Neumann algebras \(\mathcal{N} \) with a faithful semifinite normal trace \(\tau \). In the case of a bounded self-adjoint operator \(H_0 \in \mathcal{N} \) and \(\tau \)-trace class perturbation \(V \), this problem has been solved by R. W. Carey and J. D. Pincus in [CP]. The novelty of our approach [ADS] is to consider the case of an (unbounded) operator \(H_0 \) affiliated with \(\mathcal{N} \). The main result of Section 3.1 is Theorem 3.1.13, which is a semifinite analogue of classical result of M. G. Kreĭn.

The main difficulty here is that there is no proper analogue of the classical Fredholm determinant in semifinite von Neumann algebras (recall that Fuglede-Kadison determinant takes only non-negative values; in the type I case, the Fuglede-Kadison determinant is just the absolute value of Fredholm determinant). This difficulty is overcome with the use of the Brown measure [Brn]. The Brown measure together with the semifinite analogue of the Lidskii theorem [Brn] (see [Lid], [Si, Section 3] for the classical Lidskii theorem) allows us to prove the conditions of the above mentioned theorem from complex analysis in case of \(\tau \)-finite perturbations. Generalization to an arbitrary relatively trace class perturbations follows the lines of the classical case \(\mathcal{N} = \mathcal{B}(\mathcal{H}) \).

Note that, if \(\tau (1) < \infty \), then the spectral shift formula (3.25) may be derived directly by the argument given in [Kr2], provided \(f \) is absolutely continuous and \(f' \in L^1(\mathbb{R}) \). This argument yields the formula

\[
\xi_{H+V,H}(\lambda) = \tau \left(E^{H}_{\lambda} \right) - \tau \left(E^{H+V}_{\lambda} \right), \quad \text{a.e. } \lambda \in \mathbb{R}.
\]

This formula goes back to Lifshits [Lif] and reduces the calculation of the spectral shift function to computation of the spectral distributions of the operators \(H + V, H \). In the setting given by Theorem 3.1.13, again in the special case of finite trace, the formula (3) may be derived from (3.25) by a standard argument.

Another problem considered in this thesis, is the semifinite version of Birman-Solomyak formula for the spectral shift function. In 1975, Birman and Solomyak established the beautiful formula for the spectral shift function

\[
\xi(\lambda) = \frac{d}{d\lambda} \int_0^1 \text{Tr}(VE_{\lambda}^{H'}) \, dr,
\]

where \(H_r = H_0 + rV, V \in L^1(\mathcal{H}) \). This formula is called the spectral averaging formula. Birman-Solomyak proved this formula using double operator integrals. This formula was established by V. A. Javrjan in [Jav] four years earlier. Javrjan considered the spectral averaging of Sturm-Liouville operator on a half-line with respect to boundary condition. This corresponds to one-dimensional perturbation.

In 1998, B. Simon [Si2] found a short and simple proof of (4). As B. Simon notes in [Si2], the formula (4) was rediscovered by many authors, who were
not aware of V. A. Javrjan and Birman-Solomyak’s papers; among them Kotani [Ko], who, in development of the celebrated result of Goldshtein-Molchanov-Pastur [GMP], used spectral averaging to show that the spectrum of certain random one-dimensional Schrödinger operators is a purely point spectrum with probability 1 and that the corresponding eigenfunctions decay exponentially.

The main result of Section 3.4 (Theorem 3.4.2) establishes a semifinite analogue of Birman-Solomyak’s spectral averaging formula. The proof follows essentially the original proof of Birman-Solomyak. Since Birman-Solomyak’s proof uses double operator integrals, it was necessary to develop the theory of the double (and in general multiple) operator integral to von Neumann algebras. The double operator integral theory developed in [dPSW] and [dPS] is not applicable in this situation, since the unperturbed operator H_0 is not in general τ-measurable, as required in [dPSW, dPS]. In the type I case, τ-measurability is equivalent to boundedness. Consequently, it is first necessary to develop the theory of double (multiple) operator integrals in von Neumann algebras, that will cover the situation that H_0 is unbounded.

Multiple operator integrals were first introduced in the celebrated work of Yu. L. Daletski˘ı and S. G. Kre˘ın [DK]. A multiple operator integral is an expression of the form

$$T_{\phi^{H_0,H_1,\ldots,H_n}}(V_1,\ldots,V_n) := \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \varphi(\lambda_0,\ldots,\lambda_n) dE_{\lambda_0} H_0 V_1 dE_{\lambda_1} H_1 V_2 dE_{\lambda_2} H_2 \cdots V_n dE_{\lambda_n},$$

where V_1,\ldots,V_n are bounded operators on \mathcal{H}, H_0,\ldots,H_n are self-adjoint operators on \mathcal{H}, and φ is a function of $n+1$ variables. The initial approach of [DK] to the definition of multiple operator integrals is to consider them as repeated integrals

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \varphi dE_{\lambda_0} H_0 V_1 dE_{\lambda_1} H_1 V_2 \cdots V_n dE_{\lambda_n} \right) dE_{\lambda_0},$$

for which purpose they define first the spectral integrals of operator valued functions

$$\int_{-\infty}^{\infty} F(\lambda) dE_{\lambda}^H.$$
vector-valued measure. He then extends this definition to arbitrary bounded V_j's under some additional conditions on φ.

For the purpose of generalizing the theory of multiple operator integrals to von Neumann algebras, it is convenient [ACDS] to define the multiple operator integral as follows. If one can write the function φ in the form (see (3.27))

$$\varphi(\lambda_0, \lambda_1, \ldots, \lambda_n) = \int_S \alpha_0(\lambda_0, \sigma) \ldots \alpha_n(\lambda_n, \sigma) \, d\nu(\sigma), \quad (5)$$

then one can see that formally

$$\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \varphi(\lambda_0, \ldots, \lambda_n) \, dE_{\lambda_0} H_0 \, V_1 \, dE_{\lambda_1} H_1 \, V_2 \, dE_{\lambda_2} H_2 \ldots V_n \, dE_{\lambda_n} H_n$$

$$= \int_S \alpha_0(H_0, \sigma) V_1 \alpha_1(H_1, \sigma) \ldots V_n \alpha_n(H_n, \sigma) \, d\nu(\sigma).$$

We call the representations of the form (3.27) BS-representations. The idea is to define the multiple operator integral by the right hand side of this equality. One has to prove that this definition is well-defined, i.e. that it does not depend on the representation (5) of the function φ. This is done in Theorem 3.2.8. This idea is taken from the work of Solomyak and Sten’kin [SS], who actually used implicitly this definition of multiple operator integral. The difference was that they considered series of the form

$$\varphi(\lambda_0, \lambda_1, \ldots, \lambda_n) = \sum_{k=1}^{\infty} \alpha_{0,k}(\lambda_0) \ldots \alpha_{n,k}(\lambda_n).$$

This same idea had been used earlier to define multiple operator integrals independently by V. V. Peller [Pel].

An advantage of our new approach to the definition of multiple operator integrals, is that once some BS representation for φ is found, one can work with the multiple operator integral as the usual integral of operator-valued functions, consequently using the well-developed and the well-known theory of such integrals. Another advantage is that sometimes different BS representations for the same function φ turn out to be better suited for a particular problem. For example, it is known that the difference $f(A) - f(B)$ can be represented as

$$f(A) - f(B) = T^{A,B}_{f^{[1]}}(A - B),$$

where $f^{[1]}(\lambda, \mu) = \frac{f(\lambda) - f(\mu)}{\lambda - \mu}$ is the first divided difference of the function f.

Examples of usage of different BS-representations of $f^{[1]}$ can be found in Sections 3.3 and 4.1.

The last chapter is devoted to the notion of spectral flow and its connection with the theory of spectral shift function. The notion of spectral flow was introduced by M. Atiyah, V. Patodi and I. M. Singer in [APS] as the net number of
eigenvalues which cross zero from the left to the right. E. Getzler [Ge, Theorem 2.6] established the following formula

\[\text{sf}(D_0, D_1) = \sqrt{\frac{\varepsilon}{\pi}} \int_0^1 \text{Tr} \left(D_u e^{-\varepsilon D_u^2} \right) du + \frac{1}{2} \eta_\varepsilon(D_1) - \frac{1}{2} \eta_\varepsilon(D_0), \] (6)

where

\[\eta_\varepsilon(D_0) := \frac{1}{\sqrt{\pi}} \int _\varepsilon ^\infty \tau \left(D_{0e}e^{-tD_{0e}^2}\right) t^{-1/2} dt \]

is \(\eta \)-invariant of \(D_0 \), and \(\{D_u\} \) is a piecewise smooth path connecting \(D_0 \) and \(D_1 \). The integral (6) is interpreted as an integral of the one-form

\[\alpha_\varepsilon(X) = \sqrt{\frac{\varepsilon}{\pi}} \text{Tr}(X e^{-\varepsilon D^2}), \] (7)

where \(X \in B_{sa}(H) \), the real Banach space of bounded self-adjoint operators on the Hilbert space \(H \). J. Phillips [Ph, Ph2] gave a definition of spectral flow different from the original definition of [APS]. This definition interprets spectral flow as Fredholm index and as such it can be generalized also to the case of semifinite von Neumann algebras. In [CP, CP2] A. L. Carey and J. Phillips generalized the integral formulas for spectral flow to the semifinite case, establishing integral formulas for the \(\theta \)-summable and \(p \)-summable cases (i.e. \((1 + D^2)^{-p/2} \) has finite \(\tau \)-trace). In particular they establish the formula \((p > 1)\)

\[\text{sf}(D_0, D_1) = \tilde{C}_p^{-1} \int_0^1 \text{Tr} \left(D_t(1 + D_t^2)^{-p}\right) dt + \beta_p(D_1) - \beta_p(D_0), \]

where \(\beta_p(D) \) is an analogue of the \(\eta \)-invariant for the \(p \)-summable case [CP]. In the case of a \(p \)-summable spectral triple \((A, D_0, N) \) and perturbation \(V = u[D_0, u^*] \), the operators \(D_0 \) and \(D_1 = uD_0u^* \) are unitarily equivalent, so that the last formula takes the form

\[\text{sf}(D_0, uD_0u^*) = \tilde{C}_p^{-1} \int_0^1 \text{Tr} \left(u[D_0, u^*][1 + (D_0 + tu[D_0, u^*])^2]^{-p/2}\right) dt. \] (8)

In [CPRS], this formula is the starting point for a proof of the Local Index Theorem of Connes-Moscovici in non-commutative geometry. One of the ideas of the proof is to consider \(p \) as complex variable, i.e. to consider analytical continuation of the last integral as a function of \(p \). In [CPS], using the zeta-function representation for the Dixmier trace due to A. Connes [Co], it was shown that when \(p \to 1^+ \), the spectral flow becomes the Dixmier trace [CPS, Theorem 6.2]. At the noncommutative geometry workshop at Banff in 2005, it was observed that when \(p \to \infty \), the last integral formula for spectral flow becomes the Birman-Solomyak formula for the spectral shift function. This key observation was developed in [ACS]. One of the main results of [ACS] states that if \(D_0 \) is an operator with compact resolvent and \(D_1 \) its perturbation by a bounded self-adjoint operator, then

\[\text{sf}(\lambda; D_0, D_1) = \xi_{D_1, D_0}(\lambda) + \frac{1}{2} \tau(N_{D_1 - \lambda}) - \frac{1}{2} \tau(N_{D_0 - \lambda}). \]
Combined with the Lifshits-Kre˘ın trace formula (1), this formula also implies that when the "endpoints" D_0 and D_1 are unitarily equivalent, the spectral flow (= the spectral shift) function is constant. This sheds some light on integral formulas for spectral flow like (8), since it is otherwise difficult to understand why one should take into account eigenvalues very far from 0 to compute the spectral flow at 0. The point is that, in the case of unitarily equivalent endpoints $D_0 \sim D_1$, the spectral flow at all points is the same ("the law of conservation of spectrum"), so that one can compute "parts" of spectral flow anywhere on the spectral line.

The well-known Lidskii theorem (in its general semifinite form given in [Brn]) asserts that if \mathcal{N} is a semifinite von Neumann factor with a faithful normal semifinite trace τ, then the trace $\tau(T)$ of an arbitrary operator $T \in L^1(\mathcal{N}, \tau)$ is given by

$$\tau(T) = \int_{\sigma(T) \setminus \{0\}} \lambda \, d\mu_T(\lambda),$$

where μ_T is a Borel measure (the so-called Brown measure of T) on the non-zero spectrum of T. In the case when \mathcal{N} is a type I factor, the measure μ_T is the counting measure on the set of all eigenvalues of T. In Section 2.2.2, we present an analogue of such a formula for Dixmier traces.

In the case of a standard (normal) trace, the assertion of the Lidskii theorem for self-adjoint operators is immediate due to the absolute convergence of the series $\sum_{n \geq 1} \lambda_n(T)$ of any $T = T^*$ from the trace class. This is not the case any longer for Dixmier (non-normal) traces, since the latter series diverges for any $T = T^* \in L^{1,\infty}(\mathcal{N}, \tau)$ which does not belong to the trace class.

The main result of Section 2.1 is Theorem 2.2.11. The Lidskii type formula given there holds for all operators $T \in L^{1,w}$. The ideal $L^{1,w}$ usually arises in geometric applications. In particular, if \mathcal{N} is the algebra of all bounded operators on $L^2(M)$ where M is a compact Riemannian n-manifold (respectively, if \mathcal{N} is the II$_\infty$ factor $L^\infty(\mathbb{R}^n) \rtimes \mathbb{R}^n_{\text{discr}}$ [CMS, Shi]), the ideal $L^{1,w}$ contains all pseudodifferential operators (respectively, all almost periodic pseudodifferential operators) of order $-n$.

The Lidskii formula for Dixmier traces τ_ω, where ω is an arbitrary dilation invariant state on $L^\infty(0, \infty)$, takes an especially simple form for the case of measurable operators T (by definition, an operator $T \in L^{1,\infty}(\mathcal{N}, \tau)$ is measurable if $\tau_\omega(T)$ does not depend on ω). In this case, $\tau_\omega(T)$ coincides with the true limit

$$\lim_{t \to \infty} \frac{1}{\log(1+t)} \int_{\lambda \notin \mathcal{G}} \lambda \, d\mu_T(\lambda).$$

The proof of Theorem 2.2.11 depends crucially on the recent characterization of positive measurable operators from $L^{1,\infty}(\mathcal{N}, \tau)$ as those for which the limit

$$\lim_{t \to \infty} \frac{1}{\log(1+t)} \int_0^t \mu_s(T) \, ds$$
exists [LSS, Theorem 6.6], and the spectral characterization of sums of commutators in type II factors [DK2, Fac]. The spectral characterization of sums of commutators is a very deep result, obtained independently by T. Fack [Fac, Theorem 3], N. J. Kalton [Kal, DK] and K. J. Dykema and N. J. Kalton [DK2, Theorem 6.8, Corollary 6.10] (though the main idea of the proof seems to be the same in all these papers). This result implies that the Dixmier trace of any operator T from the Dixmier ideal depends only on the Brown measure of the operator T. However, Theorem 2.2.11 goes much further and gives an explicit formula for the Dixmier trace $\tau_\omega(T)$ in terms of the Brown measure μ_T.

Now we give a brief description of the sections of Chapter 1 (Preliminaries). In Section 1.5 (Theory of τ-Fredholm operators) we give an exposition of the theory of τ-Fredholm operators. We follow mainly the original Breuer’s works [Br, Br2] and [PR, Appendix B]. Breuer proved his results for semifinite factors, but as shown in [PR, Appendix B] the difference between the factor case and the non-factor case is not significant. In Section 1.6 (Spectral flow in von Neumann algebras) an exposition is given of J. Phillips’ theory of spectral flow in semifinite von Neumann algebras. Here I follow the papers of J. Phillips [Ph, Ph2].

Section 1.7 (Fuglede-Kadison determinant) contains an exposition of the Fuglede-Kadison determinant [FKa], following L. G. Brown’s paper [Brn]. B. Fuglede and R. V. Kadison introduced this determinant in the case of type II1 factors, while L. G. Brown considers semifinite factors. We give this theory for semifinite von Neumann algebras, not necessarily factors. In Section 1.8 (The Brown measure), an exposition of the Brown measure is given, following the original work of Brown [Brn].

The main results of this thesis are Theorem 3.2.8 [ACDS] (new approach to multiple operator integrals), Theorem 2.2.11 [AS] (Lidskii theorem for Dixmier traces), Theorem 3.1.13 [ADS] (Krein’s formula for spectral shift function in semifinite von Neumann algebras), Theorem 3.3.3 [ACDS], Theorem 3.3.6 [ACDS] (high order Fréchet derivative of functions $f(H)$ of self-adjoint operators H with suitable restrictions on the function f), Theorem 3.4.2 [ACDS] (semifinite Birman-Solomyak spectral averaging formula), Theorem 4.1.17 [ACDS] (formula for Fréchet derivative in terms of double operator integrals), Theorem 4.2.5 [ACS] (trace formula for operators with compact resolvent), Theorem 4.3.13 [ACS], Theorem 4.3.18 [ACS] (connection between spectral flow and spectral shift function), Theorem 4.3.21 [ACS] (infinitesimal spectral flow), Theorem 4.3.24 [ACS] (spectral flow for L^p-summable spectral triples), Theorem 4.3.31 [ACS] (Carey–Phillips formula with new proof).