THE EFFICACY OF HOME BASED EXERCISE REGIMES FOR LIMB OEDEMAS

Amanda Moseley
BN, RN, BHSc(Hons)

A thesis submitted for the degree of
Doctorate of Philosophy
Flinders University
Adelaide, South Australia, Australia

School of Medicine
2007
DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

__

Amanda Moseley
CONTENTS

SUMMARY XIV

ACKNOWLEDGEMENTS XVI

INTRODUCTION 1

CHAPTER 1. FLUID MOVEMENT AND DRAINAGE IN A ‘NORMAL’ LYMPATIC AND VENOUS SYSTEM, A DYSFUNCTIONAL LYMPHATIC AND VENOUS SYSTEM AND THE ASSOCIATED DETRIMENTAL CHANGES 5

Fluid movement between the capillary bed and the interstitium in the normal state 5

Figure 1a. Traditional Starling principles with the inclusion of the role of the initial lymphatics 6

Figure 1b. Revised Starling principles with the inclusion of the role of the initial lymphatics 7

The reabsorption of fluid, protein and other substances by the initial lymphatics in the normal state. 8

Figure 2a. Depiction of an initial lymphatic capillary demonstrating the endothelial cells and anchoring filaments 9

Figure 2b. Depiction of the opening of an endothelial junction by tension on the anchoring filament and the movement of fluid and protein 9

Movement and reabsorption of lymph along the lymphatic system in the normal state 10

Figure 3. Depiction of a lymph collector and the role of the lymphangion and valves 10

Figure 4. Depiction of a lymph node demonstrating how lymph is filtered. 12

Lymph movement and drainage in a compromised lymphatic system 13

How the lymphatic system becomes compromised 13

Primary lymphoedema 13

Secondary lymphoedema 13

Compensatory mechanisms that can occur in a damaged lymphatic system 15

What occurs when the lymphatic system becomes overwhelmed 15

Secondary Lymphoedema 18

Possible precipitators of secondary lymphoedema 18

Changes that accompany secondary lymphoedema 18
Lower Limb Venous Flow in a Normal Functioning Venous System

What causes the lower limb venous system to fail?

The Development of Lower Limb Chronic Venous Insufficiency (CVI)

The Impact of Limb Swelling Upon the Individual

CHAPTER 2. THE ASSESSMENT, DIAGNOSIS AND TREATMENT OF THE LYMPHOEDEMA OR VENOUS OEDEMA LIMB

Patient history and physical assessment

Limb assessment

Circumference

Limb volume

Using tape measurement

Using water displacement

Imaging

Magnetic Resonance Imaging (MRI)

Computerized Tomography Scanning (CT Scan) and ultrasound

Limb lymphatic function

Lymphography

Lymphoscintigraphy

Leg venous function

Venous doppler

Duplex ultrasound

Air plethysmography

Phlebography and varicography
Lymphoscintigraphy
Limb Range of Movement
Subjective Symptoms & Quality of Life

The Importance of Treatment and Management of the Lymphoedema or Venous Oedema Limb

Treatments for the Lymphoedema or Venous Oedema Limb
Peripheral Therapies

Surgery for Limb Lymphoedema
Surgical Anastomoses
Excisional Operations
Liposuction

Treatments for Chronic Venous Insufficiency of the Lower Limb
Sclerotherapy & Laser Therapy
Vein Stripping and Perforator Vein Ligation
Venous Bypass and Valve Repair/Replacement

The Important Role of Exercise for the Lymphoedema or Venous Oedema Limb

CHAPTER 3. SYSTEMATIC REVIEW OF THE EFFECTIVENESS OF COMMONLY RECOMMENDED CONSERVATIVE THERAPIES FOR SECONDARY LIMB Lymphoedema AND OEDEMA OF THE LEGS.

Synopsis
Objectives
Review Methods
Types of Studies
Types of Participants
Inclusion Criteria
Secondary lymphoedema of the limbs
Oedema of the legs
Exclusion Criteria
Secondary lymphoedema of the limbs 58
Oedema of the legs 58

Types of Interventions
Combined Decongestive Therapy or Complete Physical Therapy or Complex Physical Therapy 59
Manual Lymphatic Drainage 60
Self/partner massage 61
Compression (multi-layering) bandaging 61
Compression garments 62
Limb Exercises 63
Limb Elevation 63
Pneumatic Pump Therapy 63
Low Level Laser Therapy 65
Oral Pharmaceuticals 65

Types of Outcome Measures

Search Strategy

Quality Assessment

Analysis

Results

Legend

Complete Decongestive/Physio Therapy (CPT) 74
Table 3.1. Summary of Results of Complete Decongestive/Physio Therapy 80

Manual Lymphatic Drainage (MLD) 84
Table 3.2. Summary of Results of Manual Lymphatic Drainage (MLD) Trials 89

Compression (Garments or Bandaging) for Limb Lymphoedema 93
Table 3.3a. Summary of Results of Compression (Garments or Bandaging) for Limb Lymphoedema

Compression Garments for Leg Oedema

Table 3.3b. Summary of Results of Compression Garments for Leg Oedema

Exercise Regimes for Limb Lymphoedema

Table 3.4a. Summary of Results of Exercise Regimes for Limb Lymphoedema

Exercise Regimes for Leg Oedema

Table 3.4b. Summary of Results of Exercise Regimes for Leg Oedema

Elevation for Limb Lymphoedema

Elevation for Leg Oedema

Table 3.5a. Summary of Results of Elevation for Limb Lymphoedema

Table 3.5b. Summary of Results of Elevation for Leg Oedema

Pneumatic Pump Therapy

Table 3.6. Summary of Results of Pneumatic Pump Therapy

Low Level Laser Therapy

Table 3.7. Summary of Results of Low Level Laser Therapy

Oral Pharmaceuticals for Limb Lymphoedemas

Table 3.8a. Summary of Results of Oral Pharmaceuticals for Limb Lymphoedemas

Oral Pharmaceuticals for Leg Oedema

Table 3.8b. Summary of Results of Oral Pharmaceuticals for Leg Oedema

Comparison Graphs of the Reviewed Conservative Therapies

Figure 3.1a. Average percentage change for each conservative regime at end of trial in secondary arm lymphoedema

Figure 3.1b. Average percentage change for each conservative regime at end of trial in lower limb swelling

Discussion

Appendix 3.1. Articles Excluded from the Systematic Review
Appendix 3.2a. Quality Assessment Tool for Randomized Trials. 167
Appendix 3.2b. Quality Assessment Tool for Non-Randomized Trials. 168
Appendix 3.3a. Quality Ratings of Randomised Trials 169
Appendix 3.3b. Quality Ratings of Non-Randomised Trials 172
CHAPTER 4. RESULTS OF NEW EXERCISE REGIMES FOR LIMB OEDEMAS 174

Trial Methods 174

Trial Recruitment 174

Inclusion/Exclusion Criteria 175
Secondary Leg Lymphoedem 175
Secondary Arm Lymphoedema 175
Venous Leg Oedema 175
Withdrawal Criteria 176

Measurements 177

Perometry 177
Figure 4.1.a. Perometer (Pero-systems®, Germany); demonstrating the square measuring frame, tracking system and the adjustable limb support 178

Bioimpedance 179
Figure 4.1.b. InBody 3.0® (Biospace Ltd®, Korea) muti-frequency (5-500Hz) bioimpedance machine; demonstrating the data display screen and hand and feet electrodes 180

Tonometry 181
Figure 4.1.c. Tonometer (Flinders Medical Centre Biomedical Engineering, Australia) demonstrating the mechanical loading, micrometer linear scale and foot plate 182

Table 4.1.a. Tonometry measurement technique for each lymphatic territory in the arm and leg 183

Subjective measurements 183
Calculation of actual oedema and percentage change 184
Secondary Leg Lymphoedema & Venous Leg Oedema Only 184
Quality of Life Questionnaire 184

Secondary Leg Lymphoedema Only 185

Lymphoscintigraphy 185

TRIAL ONE: The effect of the Sun Ancon® Chi Machine® Aerobic Exerciser which delivers leg elevation and passive exercise for those with chronic secondary leg lymphoedema 186

Abstract 186

Aim 187

Treatment Regime 187

Figure 4.1.1. The Sun Ancon® Chi machine® Aerobic Exerciser (Hsin Ten Enterprise®, Taiwan) 188

Measurement Schedule 188

Analysis 189

Study Population 189

Results 189

Leg Changes 189

Figure 4.1.2a. Change in median leg volume (ml’s) over three weeks of treatment with the Aerobic Exerciser and then at 1 month follow up, as measured by perometry 191

Figure 4.1.2b. Change in median leg fluid (ml's) over three weeks of treatment with the Aerobic Exerciser then at 1 month follow up, as measured by bioimpedance 192

Table 4.1.1. Subjective leg symptoms - before and after treatment with the Aerobic Exerciser then at 1 month follow up 193

Whole Body Composition Changes 194

Figure 4.1.3a. Changes in whole body extra cellular fluid volume (L’s) over three weeks of treatment with the Aerobic Exerciser then at 1 month follow up, as measured by bioimpedance 195

Figure 4.1.3b. Changes in body weight (Kg’s) over three weeks of treatment with the Aerobic Exerciser then at 1 month follow up, as measured by bioimpedance 196

Table 4.1.2. Correlations of leg changes (volume, fluid & symptoms) and body compositional changes after 3 weeks of treatment with the Aerobic Exerciser 197

Quality of Life Changes 198
Table 4.1.3a. Improvements in certain quality of life domains after three weeks of
 treatment with the Aerobic Exerciser

Table 4.1.3b. Correlations in quality of life improvements with subjective leg
symptom improvements after 3 weeks of treatment with the Aerobic Exerciser

Lymphoscintigraphy

Figure 4.1.4a. Lymphoscintigraphy: Exemplar of MBq counts indicating radioactivity
transit through the affected leg before and after treatment with the Aerobic Exerciser

Figure 4.1.3b. Example of a participant who had an improvement in Lympho-
scentigraphy after 3 weeks of Aerobic Exerciser use

Compliance & Side Effects

Discussion

TRIAL TWO: The effect of the Sun Ancon® Chi Machine® Aerobic Exerciser
which delivers leg elevation and passive exercise for those with venous oedema
of the legs

Abstract

Aim

Treatment Regime

Measurement Schedule

Analysis

Study Population

Results

Affected Leg(s) Change

Figure 4.2.1. Changes in median leg fluid (ml's) over three weeks of treatment with
the Aerobic Exerciser then at 1 month follow up, as measured by bioimpedance

Table 4.2.1. Subjective leg symptoms at the beginning and end of 3 weeks of
treatment with the Aerobic Exerciser and then at 1 month follow up

Body Composition Change

Figure 4.2.2. Changes in weight (Kg's) over three weeks of treatment with the
Aerobic Exerciser then at 1 month follow up, as measured by bioimpedance
Table 4.2.2. Changes in body composition at the end of three weeks of treatment with the Aerobic Exerciser then at 1 month follow up, as measured by bioimpedance 214

Quality of Life 215

Table 4.2.3a. Improvements in certain quality of life domains after three weeks of treatment with the Aerobic Exerciser 216

Table 4.2.3b. Correlations in quality of life improvements with subjective leg symptom improvements after 3 weeks of treatment with the Aerobic Exerciser 216

Side Effects 217

Discussion 217

TRIAL THREE: The effect of gentle arm exercise combined with deep breathing on secondary arm lymphoedema 219

Abstract 219

Aim 220

Treatment Regime 220

Figure 4.3.1. Sequence of arm exercise plus deep breathing performed over 10 minutes. 221

Measurement Schedule 221

Analysis 222

Study Population 222

Table 4.3.1. Demographic details of participants in the 1 month exercise plus deep breathing (EDB) group and the 1 month control group 223

Results 224

Arm Volume Changes 224

Tonometry Changes 224

Figure 4.3.2. Median arm volume and percentage oedema reduction at various periods after performing the exercise plus deep breathing regime 225

Subjective Arm Symptoms Changes 226

Table 4.3.2. Change in subjective arm symptoms at various periods after performing the exercise plus deep breathing regime 227

1 Month Follow Up 228
TRIAL FOUR: The effect of instructed limb exercise for those with secondary arm or leg lymphoedema

Abstract

Aim

Treatment Regime

Measurement Schedule

Analysis

Study Population

Table 4.4.1. Profile of arm and leg lymphoedema participants

Results

Arm Lymphoedema Participants

Arm Volume Changes

Truncal Fluid Changes

Figure 4.4.1. Mean arm volume and fluid at baseline, directly after performing the instructed exercise regime and 20 minutes post regime

Figure 4.4.2. Mean truncal fluid in the arm lymphoedema group at baseline, directly after performing the instructed exercise regime and 20 minutes post regime

Subjective Arm Symptom and Range of Movement Changes

Table 4.4.2. Mean reductions in arm subjective limb symptoms directly after performing the instructed exercise regime

Table 4.4.3. Mean improvements in arm range of movement (degrees°) directly after performing the instructed exercise regime
Leg Lymphoedema Participants

Leg Volume Changes

Truncal Fluid Changes

Figure 4.4.3. Mean leg volume and fluid at baseline, directly after performing the instructed exercise regime and 20 minutes post regime

Figure 4.4.4. Mean truncal fluid in the leg lymphoedema group at baseline, directly after performing the instructed exercise regime and 20 minutes post regime

Subjective Leg Symptom and Range of Movement Changes

Table 4.4.4. Mean reductions in leg subjective limb symptoms directly after performing the instructed exercise regime

Table 4.4.5. Mean improvements in leg range of movement (degrees°) directly after performing the instructed exercise regime

Discussion

Comparison graphs of the percentage volume change achieved by the three new exercise regimes in comparison to previously studied exercise regimes

Figure 5a. Percentage arm volume change for different exercise regimes in arm lymphoedema; initial (post trial) reduction and follow up reduction

Figure 5b. Percentage leg volume change for different exercise regimes in leg lymphoedema & venous oedema; initial (post trial) reduction and follow up reduction

CHAPTER 5. DISCUSSION OF THE IMPORTANCE OF EXERCISE REGIMES FOR LIMB OEDEMAS

RECOMMENDATIONS

REFERENCES
Summary

Both secondary lymphoedema and venous oedema of the limb are the consequence of an imbalance between tissue fluid infiltrate and drainage, which leads to interstitial fluid accumulation, tissue compositional changes, limb discomfort and morbidity. Numerous conservative therapies have been developed to address some of these negative outcomes, with a proportion of these being labour and cost intensive. This makes the investigation of cost effective and easy to implement home based regimes very important. One such therapy is limb exercise, which can be beneficial for limb oedemas through changes in both interstitial pressure and calf muscle activation. The potential benefits of exercise certainly justify further investigation to help determine it’s viability as a self instigated therapy for limb oedemas.

A systematic review of existing conservative therapies (including limb exercise) revealed varying, and at times not very rigorous outcomes for those with limb oedemas. Some claims of treatment outcomes were quite startling, with a volume reduction of 652mls in one complex physical therapy study. In other studies the limb volume reductions were smaller, especially in the self maintenance therapies. All reviewed therapies that measured subjective limb symptoms found that these were improved, whether the participants were receiving active or placebo treatment. Studies which included a follow up period demonstrated that a form of additional therapy needed to be undertaken to maintain the initial improvements in limb volume and subjective symptoms. This also needs to be considered when determining the benefits of the reviewed therapies, as some require significant clinical and economic resources.
Four clinical trials were then conducted on three new exercise regimes for oedematous limbs. The first regime investigated leg elevation and passive exercise for lymphoedema and venous oedema of the legs. Both groups experienced a significant reduction in limb volume, weight, and reported skin dryness, pain, heaviness, tightness, limb size plus improvements in quality of life parameters such as depression and physical activities. Some improvements were also maintained at the one month follow up, most notably body weight, skin dryness and perceived limb size.

A 10 minute deep breathing plus arm exercise regime for secondary arm lymphoedema initially achieved reductions in arm volume, truncal fluid and perceived heaviness and tightness, with greater reductions in these parameters being achieved when this regime was performed over a 1 month period. A pilot study of combined deep breathing, self massage and sequential limb exercises for secondary arm and leg lymphoedema demonstrated a small volume reduction for those with arm lymphoedema but a greater reduction in those with leg lymphoedema. However, both groups experienced positive improvements in perceptions of limb heaviness, tightness and range of movement.

The limb reductions and improvements achieved by these exercise regimes were sometimes similar to and at other times greater than those obtained in previous exercise studies and existing conservative therapies administered by clinicians and/or the patient. The systematic review in combination with the clinical trials has demonstrated the multifaceted benefits of limb exercise, including limb volume reduction and improvements in subjective symptoms, limb function and quality of life issues. This makes exercise a cheap and easy to implement adjunct or alternative regime for those with limb oedemas.
Acknowledgements

I would like to acknowledge and thank Professor Neil Piller (Principal Supervisor), Associate Professor Colin Carati and Dr Jack Walsh (Co-Supervisors) who have all been kind, patient and guiding mentors throughout this process. I would also like to thank Adrian Esterman (Biostatistician) who provided invaluable advice for the statistical analysis of the clinical trials, Margi Moncrieff (Wound Care Nurse Consultant) and Dr Jack Walsh (Vascular Specialist) who helped in the recruitment of patients and Gillian Buckley (Physiotherapist) who was the co-investigator of the instructed self massage and sequential limb exercise pilot study.

Thank you to Hsin Ten Enterprise® who provided the financial support through Flinders Consulting Pty Ltd. for the Aerobic Exerciser trial and the Lyn Wrigley Foundation (Australia) for providing the research grant for the arm exercise plus deep breathing trial. Special thanks to all the participants who generously volunteered to participate in these clinical trials. Lastly, I would like to thank my husband David, who unwaveringly supports all the endeavours I undertake in life.
Introduction

Secondary lymphoedema and venous oedema of the limbs represent an imbalance between tissue infiltrate and drainage which resultant limb swelling, detrimental vessel and tissue changes and reduced quality of life. Surprisingly, these conditions effect a significant number of the population, with an estimated 30% of people developing secondary limb lymphoedema as a sequelae of cancer treatment (Williams, Franks & Moffatt 2005; Deo, Ray, Rath et al 2004), with chronic venous insufficiency and subsequent lower limb oedema affecting 4-5% of the population in developed countries (Stafa 2002; Fowkes, Evans & Lee 2001). These conditions have a personal and socioeconomic impact upon the individual and an economic impact upon the health care system, which treats not only the primary conditions, but also their co-morbidities (such as ulceration and cellulitis).

Therefore it is in the best interest of both the individual and the health care system to implement therapy to reduce the risk of these conditions developing and to halt their progression when they do occur. Unfortunately, universal access to effective and beneficial treatment for these conditions is currently not available. Globally, treatment access is reliant upon the resources each health care system can provide for treatment and the availability of suitably qualified clinicians who can both accurately diagnose and treat the conditions. Individually, access is reliant upon the person’s time availability, financial resources and geographical location (for example, city versus rural living).
These access issues make the establishment of beneficial and cost effective home based treatment regimes very important. In particular, exercise can be cost effective and easy to undertake in the home environment and therefore a potentially very beneficial maintenance tool in both lymphatic and vascular limb swelling. Although exercise has been traditionally incorporated into overall therapy programs for limb oedemas, and has been shown to be beneficial in combination with complex physical therapy (Casley-Smith 1997; Swedborg 1980), compression and massage (Leduc, Peeters & Borgeois 1990; Olszewski & Engeset 1988), it’s stand alone effects and benefits have only recently been explored.

This may partly be related to clinicians traditionally being hesitant in recommending exercise for those with limb oedemas, in the fear that the increased muscular blood flow would precipitate or exacerbate the oedema, not help it. However, research has demonstrated that strenuous exercise does not always exacerbate the pre-existing swelling or contribute to it’s development (Turner, Hayes & Reul-Hirche 2004; McKenzie & Kalda 2003; Kahn, Azoulay, Hirsch et al 2001; Harris & Niesen-Vertommen 2000; Ciocon, Galindo-Ciocon & Galindo 1995). In fact, it has been shown that exercise changes interstitial tissue pressure and therefore has crucial benefits for limb oedemas. These benefits include increased lymph flow (Havas, Lehtonen, Vuorela et al 2000; Mazzoni, Coates, O’Brodovich & Goeree 1993; Skalak & Shönbein 1990) and transport of inflammatory proteins (Olszewski & Engst 1998; Havas, Parviainen, Vuorela et al 1997). Exercise also activates the calf muscle pump, which increases venous ejection fraction in those with lower limb oedema subsequent to chronic venous insufficiency (Padberg, Jrohston & Sisto 2004; Yang, Vandongen & Stacey 1998).
As patients with limb oedemas have variable access to conservative therapies, alternative or adjunct regimes that contribute to limb maintenance, are easy to implement and cost effective are most certainly needed. Considering previous research has shown that exercise maybe beneficial, both for oedema arising from lymphatic and/or vascular dysfunction, further research into new modalities that use exercise as their core component is warranted. Therefore, this thesis explores the benefits of different exercise regimes for limb oedema of both lymphatic and vascular origin. This is achieved through:

- An exploration of normal and detrimental lymphatic and venous flow in the limb and what occurs when the lymphatic and venous systems fail

- An exploration of the importance of accurate diagnosis, measurement and treatment of the oedematous limb

- A systematic review of commonly recommended conservative therapies for limb oedemas, including:
 - Complex physical therapy
 - Manual lymphatic drainage
 - Self massage
 - Compression (bandaging and garments)
 - Limb exercise
 - Limb elevation
 - Low level laser therapy
 - Pneumatic pump therapy
 - Oral Pharmaceuticals
A comparison of the average percentage reduction achieved by the reviewed conservative therapies

The presentation of four clinical trials which investigated the benefits of different exercise regimes for limb oedemas, including;

- Limb elevation and passive exercise for secondary leg lymphoedema and venous oedema of the legs
- Combined deep breathing and arm exercise for secondary arm lymphoedema
- Instructed deep breathing, self massage and sequential limb exercises for secondary arm and leg lymphoedema

A comparison of the percentage oedema reduction achieved by the new exercise regimes against the reductions achieved by previously studied exercise regimes.

An exploration of the overall volume reductions and improvements in subjective symptoms, quality of life and range of movement achieved by the new exercise regimes in comparison with existing exercise regimes, self maintenance therapies and health professional administered therapies.