
Clare Louise Griffin

Submitted in total fulfillments of the degree of Doctor of Philosophy

School of Biological Sciences
Faculty of Science and Engineering
Flinders University of South Australia

December 2006
Chapter 1. General Introduction

Unisexuality in Vertebrates
Environmental (Ecological) Hypotheses
Mutation-based Models
Asexuality in Australia
The study system: *Menetia greyii*

Chapter 2. General Methods

Definitions
Statistical Analyses
Intact Tails

Chapter 3. Ecology of sexual and parthenogenetic *Menetia greyii*

Introduction
Hypotheses, Aims and Predictions
Methods
The study area
Data collection
Genetic Identification of taxa
Spatial Niche breadth & overlap
Statistical Analyses
Results
Lineages present and abundance
Macrohabitat
Microhabitat use within ruins
Coexistence along the two fence lines
Morphology
Tail breakage
Discussion
Genetic Lineages Present
Habitat Use
Predation
Support for Hypotheses?
Conclusions

Chapter 4. Reproduction in parthenogenetic and sexual female *Menetia greyii*

Introduction
Chapter 5. Activity patterns and physiological characteristics of parthenogenetic and sexual *Menetia greyii*

Introduction

Hypotheses, Aims and Predictions

Methods

Daily Activity Patterns

Temperature Selection

Sprint Speed

Results

Activity

Temperature Selection

Sprint Speed

Discussion

Aggressive Behaviours Observed

Competitive Ability

Chapter 6. Aggression, dominance and competitive abilities of parthenogenetic and sexual *Menetia greyii*

Introduction

Hypothesis, Aims and Predictions

Methods

Prior to conducting the trials

Results

Ethogram

Discussion

Aggressive Behaviours Observed

Competitive Ability

Chapter 7. Parasite prevalence in parthenogenetic and sexual *Menetia greyii*, testing the Red Queen Hypothesis

Introduction

Hypotheses, Aims and Predictions

Methods

Results

Error! Bookmark not defined.
Parasite Prevalence .. Error! Bookmark not defined.
Are the parthenogens more susceptible to infection by parasites than the
sexuals? .. Error! Bookmark not defined.
Are the parasites infecting the most common genotype within the
population? ... Error! Bookmark not defined.
Does parasite infection have a negative impact on the fitness of the host?
... Error! Bookmark not defined.
Discussion .. Error! Bookmark not defined.
Are Parthenogens more susceptible to endoparasite infestation than sexuals?
... Error! Bookmark not defined.
Are parasites tracking the most common host genotype? ...Error! Bookmark not defined.
Do parasites cause a large enough reduction in fitness to compensate the 2-
fold cost of sex? .. Error! Bookmark not defined.

Chapter 8. General Discussion Error! Bookmark not defined.
Summary of results Error! Bookmark not defined.
Future Directions ... Error! Bookmark not defined.

Bibliography .. Error! Bookmark not defined.
List of Figures

Figure 1.1. The distribution of parthenogenetic and sexual lineages identified within the M. greyii complex in south-central Australia....Error! Bookmark not defined.

Figure 1.2. Neighbour-joining tree, based on Kimura 2-parameter distances, among mitochondrial nucleotide sequences of Menetia, rooted using Bassiana duperreyi. Bootstrap proportions (above 70%) from 10000 pseudo-replications are indicated for the deeper nodes only. *= mitochondrial enrichment procedures used. Scale represents 0.005 substitutions per site (Adams et al. 2003). Error! Bookmark not defined.

Figure 1.3. Principal coordinate analysis of the allozyme data from the overview study. The relative PCA scores have been plotted for the first and second dimensions, which individually explained 34% and 13% respectively, of the total multivariate variation. Error! Bookmark not defined.

Figure 1.4. Representative karyotypes of diploid and triploid M. greyii. a) diploid male (from Donnellan 1985); b) triploid female WP. Heteromorphy is evident for chromosomes 7 and 10 in the triploid (Adams et al. 2003). Error! Bookmark not defined.

Figure 1.5. Menetia greyii. Error! Bookmark not defined.

Figure 1.6. Distribution of Menetia greyii within Australia (shaded area), and the location of the field site (Bundey Bore) for the current study................... Error! Bookmark not defined.

Figure 3.1. The locations of the 13 sites actively searched for Menetia greyii. ... Error! Bookmark not defined.

Figure 3.2. The six different macrohabitat types actively searched for Menetia greyii. Where a) ruins, b) sheoak, c) dfob, d) blue bush, e) mallee, f) grassland ... Error! Bookmark not defined.

Figure 3.3. Yellow-orange underbelly colouring of male Menetia greyii......Error! Bookmark not defined.

Figure 3.4. The five different macrohabitat types utilised by Menetia greyii within ruins. Where a) tin, b) log, c) rock, d) fence posts, e) leaf litter. Error! Bookmark not defined.

Figure 3.5. The number of sexual females (SASF) and males (SASM), tetraploid males (SASMt), and parthenogens (WP & RP3) caught in each season. ... Error! Bookmark not defined.

Figure 3.6. Number of asexual females, b) males, c) WP parthenogens and d) RP3 parthenogens collected in bluebush, BB&db, ruins and sheoak macrohabitat, in each year of the study........ Error! Bookmark not defined.

Figure 3.7. Number of each type collected in bluebush, BB&db, ruins and sheoak macrohabitat pooled over all years............ Error! Bookmark not defined.

Figure 3.8. The number of a) sexuals females, b) males and c) RP3 parthenogens caught under each microhabitat within ruins for each year. Error! Bookmark not defined.

Figure 3.9. The number of sexuals females, males and RP3 parthenogens caught under each microhabitat within ruins for all years pooled. . Error! Bookmark not defined.
Figure 3.10. The number of dead bushes that contained zero to nine M. greyii.

Figure 3.11. Mean (± SE) snout-vent length (mm) of each type.

Figure 3.12. Weight (g) against snout-vent length (mm) for M. greyii.

Figure 3.13. Mean (±SE)(g) of M. greyii for each month of the field study.

Figure 3.14. Mean (± SE) tail length (mm) of each type.

Figure 3.15. Tail length (mm) against snout-vent length (mm) for M. greyii.

Figure 3.16. Percentage of sexual females (SASf) and males (SASM), and parthenogens (WP & RP3) with broken tails (includes recently broken and regenerated tails).

Figure 4.1. Summary of the reproductive seasons for M. greyii: a) laying season; b) period of hatching for sexual females (SAS), WP parthenogens (WP), and RP3 parthenogens (RP3).

Figure 4.2. The effect of season (day lay) on clutch size for sexual females (SAS) and parthenogens (WP & RP3).

Figure 4.3. Mean incubation time (days) for eggs laid by sexuals (SAS) and parthenogenetic (WP and RP3) M. greyii.

Figure 4.4. Percentage (of total number) of sexual (SAS) and parthenogenetic (WP & RP3) hatchlings that survived to the ages of 6 months and 12 months.

Figure 4.5. The effect of egg weight (g) on hatchling SVL (mm) for sexual (SAS) and parthenogenetic (WP & RP3) M. greyii.

Figure 4.6. Growth rates of sexual, WP parthenogen and RP3 parthenogen lab reared juvenile M. greyii.

Figure 4.7. Mean (+/-SE) a) asymptote snout-vent length (svl)(mm), and b) raw growth rates of sexual, WP parthenogen and RP3 parthenogen juvenile M. greyii.

Figure 5.1. Experimental tank setup for observing activity patterns in Menetia greyii.

Figure 5.2. Surface temperature °C (+/-SE) in the four available habitats (open sand in sun (open sun), leaf litter in sun (LL sun), leaf litter in shade (LL shade), and open sand in shade (open shade)) during diurnal hours.

Figure 5.3. Thermal gradient used to test temperature preferences in Menetia greyii.

Figure 5.4. Temperature (°C) on the sand surface along the length of the gradient.

Figure 5.5. Racetrack used to determine sprint speed in Menetia greyii.

Figure 5.6. Schematic diagram illustrating the variables used to analyse the thermal sensitivity of sprint speed.

Figure 5.7 a) the number of minutes (mean +/-SE) after lights on that each type emerged. Line represents the time the heat lamps turned on. Times above the line are after the heat lamps turned on, times below the line are prior to the heat lamps turning on. b) the number of minutes (mean +/-SE) prior to lights
off each type retreated. Line represents the time the heat lamps turned off.
Times above the line are when the heat lamps were on, times below the line
when heat lamps were off. Error! Bookmark not defined.
Figure 5.8. Percentage of observations (at 10min intervals) when lizards were on
the surface for males (SASm), sexual females (SASF), WP parthenogens
(WP) and RP3 parthenogens (RP3) during each daylight hour. N=10 in each
case. Values are mean (±SE). Error! Bookmark not defined.
Figure 5.9. Percentage of time while on the surface spent performing each activity
(basking, moving, sitting) for males (SASm), sexual females (SASF), WP
parthenogens (WP) and RP3 parthenogens. Error! Bookmark not defined.
Figure 5.10. a) percentage of time (+/SE) spent in the heated and non-heated
areas of the test arena by each type. b) percentage of time (+/SE) spent in
the open sand and leaf litter areas of the test arena by each type. Error!
Bookmark not defined.
Figure 5.11. Percentage of time each type spent a) under the leaf litter (under), b)
basking, c) moving and d) sitting in each time period (morning, afternoon,
evening). .. Error! Bookmark not defined.
Figure 5.12. The minimum, maximum and mean selected body temperatures of
males (SASm), sexual females (SASF), WP parthenogens (WP) and RP3
parthenogens (RP3) in a temperature gradient. Error! Bookmark not
defined.
Figure 5.13. a) mean (±SE) maximum sprint speed reached by each type (Vmax).
b) mean (±SE) body temperature of each type when they ran at maximum
velocity (Tmax). .. Error! Bookmark not defined.
Figure 5.14. Mean sprint speed (cm/sec ±SE) at each of test body temperatures for
males (SASm), sexual females (SASF), WP parthenogens (WP) and RP3
parthenogens. .. Error! Bookmark not defined.
Figure 6.1. Mean (+/SE) aggression levels displayed by males, sexual females,
WP parthenogens and RP3 parthenogens. Error! Bookmark not defined.
Figure 6.2 Mean (+/SE) aggression levels displayed by sexuals towards
parthenogens and parthenogens towards sexuals. Error! Bookmark not
defined.
Figure 6.3. Mean (+/SE) aggression levels displayed by a) males towards WP and
RP3 parthenogens and b) sexual females towards WP and RP3 parthenogens.
.. Error! Bookmark not defined.
Figure 6.4. Mean (+/SE) aggression levels displayed by a) WP parthenogens
towards males and sexual females and b) RP3 parthenogens towards males
and sexual females. .. Error! Bookmark not defined.
Figure 6.5. Mean (+/SE) aggression levels displayed within each treatment.Error!
Bookmark not defined.
Figure 6.6. Mean (+/SE) aggression levels displayed by males and sexual females.
.. Error! Bookmark not defined.
Figure 6.7. Percentage of pairings that produced or did not produce a clear
dominant - subordinate relationship within each treatment. Error! Bookmark
not defined.
Figure 6.8. Percentage of males, sexual females, WP parthenogens and RP3
parthenogens that were dominant, subordinate or unclear. Error! Bookmark
not defined.
Figure 6.9. Percentage of sexual and parthenogens that were dominant,
subordinate or unclear. Error! Bookmark not defined.
Figure 6.10. Mean (+/-SE) number of food items consumed by lizards of each social status................................. Error! Bookmark not defined.
Figure 6.11. Number of food items consumed (+/-SE) by sexual lizards (males and females pooled) and parthenogen lizards (WP and RP3 lizards pooled) in each feeding session................................. Error! Bookmark not defined.
Figure 6.12. Mean number of food items consumed (+/-SE) by a) males and WP parthenogens, b) males and RP3 parthenogens, c) sexual females and WP parthenogens, and d) sexual females and RP3 parthenogens in each feeding session. ... Error! Bookmark not defined.
Figure 6.13. Change in weight (g) against status. Where a status = 1 is dominant, a status = 2 is subordinate and a status = 3 is unclear......... Error! Bookmark not defined.
Figure 6.14. Mean (+/-SE) change in weight of sexuals (males and females pooled) and parthenogens (WPs and RP3s pooled) over the course of the experiment................................. Error! Bookmark not defined.
Figure 6.15. Mean (+/-SE) change in weight of males, sexual females, WP parthenogens and RP3 parthenogens over the course of the experiment. ... Error! Bookmark not defined.
Figure 6.16. Mean aggression levels of residents and intruders for treatments with sexual residents and parthenogen intruders and treatments with parthenogen residents and sexual intruders. a)cb root aggression score (AS), b) ln aggression score per encounter (AS/E), c) cb root duration of aggressive encounters (mins) and d) number of aggressive encounters (E). Error! Bookmark not defined.
Figure 6.17. Mean (+/-) aggression levels displayed by a) resident males towards WP and RP3 intruders and b) sexual females towards WP and RP3 intruders. ... Error! Bookmark not defined.
Figure 6.18. Mean (+/-) aggression levels displayed by resident WP and RP3 parthenogens towards male and sexual female intruders. ...Error! Bookmark not defined.
Figure 6.19. Percentage of pairings that produced a clear dominant – subordinate relationship for treatments with sexual residents and parthenogen intruders, and treatments with parthenogen residents and sexual intruders. Error! Bookmark not defined.
Figure 6.20. Percentage of residents and intruders (pooled for all treatments) that had a social ranking of dominant, subordinate or unclear...Error! Bookmark not defined.
Figure 6.21. Percentage of residents and intruders that had a social ranking of dominant, subordinate or unclear for trials with sexual residents and parthenogen intruders and trials with parthenogen residents and sexual intruders.. Error! Bookmark not defined.
Figure 6.22. Percentage of sexual and parthenogen residents that were dominant or subordinate.. Error! Bookmark not defined.
Figure 6.23. Mean number of food items consumed by residents and intruders for trials with sexual residents and parthenogen intruders, and trials with parthenogen residents and sexual intruders... Error! Bookmark not defined.
Figure 6.24. Change in weight of residents and intruders for treatments with sexual residents and parthenogen intruders and treatments with parthenogen residents and sexual intruders.......................... Error! Bookmark not defined.
Figure 7.1. Plates of parasites identified within the scats of Menetia greyii; a) Eimeria (protozoa), b) Entomoeba Cyst (protozoa) c) worm (helminth). (Schenck and Vrijenhoek) and b) 40X, and c) 20X) Error! Bookmark not defined.

Figure 7.2. Maximum sprint speed (Vmax) (±SE) achieved by infected and uninfected WP parthenogens........................ Error! Bookmark not defined.
List of Tables

Table 1.1. Summary of some key biological attributes of each lineage. Data from the overview study were used to determine diagnostic allozyme profiles (i.e. the combination of alleles or genotypes which best diagnose the mtDNA lineages, using SAS as a reference profile) and observed heterozygosity levels (Ho; direct count). Sex ratio, females:males (Adams, 2003).

Table 2.1. Summary of the statistical tests used.

Table 3.1. Number of M. greyii caught on each day of the nine field trips undertaken.

Table 3.2. Macrohabitat niche breadth values for each year and overall (years pooled).

Table 3.3. Macrohabitat niche values for each year and overall (years pooled).

Table 3.4. Microhabitat niche breadth values for each year and overall (years pooled).

Table 3.5. Microhabitat niche overlap values for each year and overall (years pooled).

Table 3.6. The number of bushes that contained sexuals only, parthenogens only and a mix of parthenogens and sexuals, for bushes containing from 1-9 lizards.

Table 3.7. Two-way ANOVA or ANCOVA results for snout-vent.length (mm) (SVL), weight (g) and tail length (mm). Type (SASf, SASm, WP & RP3) and year (2001-2003) were fixed factors, and SVL was a covariate when comparing weights and tail lengths.

Table 3.8. Results of Bonferroni multiple comparisons tests comparing morphology among years.

Table 3.9. Two-way ANCOVA results for weight (g) across months. Type (SASf, SASm, WP & RP3) and month (Sept – Nov) were fixed factors, and SVL was a covariate.

Table 3.10. Results of Bonferroni multiple comparisons tests comparing weight(g) among months.

Table 4.1. Equations for the three growth curves used to describe growth in juvenile M. greyii.

Table 4.2. The number of sexual males and females caught within each year of the field study, and the results of contingency Chi–square tests comparing the ratio of sexual males and females against an expected ratio of 1:1.

Table 4.3. Mean size (mm) and weight (g) of sexual (SAS) and parthenogenetic (WP & RP3) adult females.

Table 4.4. One-way ANOVA and ANCOVA results for snout-vent.length (mm) (SVL), and weight (g) of breeding females among the three taxa, SVL was a covariate.

Table 4.5. Pearson Correlations between maternal SVL and season (day lay).
Table 4.6. Number of females caught, and the percentage of caught females that were gravid during the identified breeding season (Sept – Oct) and at other times of the year (Aug, Dec–March). Error! Bookmark not defined.

Table 4.7. Number of one, two, and three-egg clutches laid by individual sexual (SAS) and parthenogenetic (WP & RP3) females........ Error! Bookmark not defined.

Table 4.8. Mean egg weight (g), clutch size and relative clutch mass (RCM (g) from sexual females (SAS) and parthenogens (WP & RP3))................. Error! Bookmark not defined.

Table 4.9. ANCOVA results comparing clutch attributes among SAS, WP and RP3 M. greyii. Covariate was maternal SVL. Error! Bookmark not defined.

Table 4.10. Pearson Correlations between maternal SVL, season (day lay) and clutch attributes. .. Error! Bookmark not defined.

Table 4.11. Pearson Correlations between maternal SVL, egg weight, season (day lay) and incubation length Error! Bookmark not defined.

Table 4.12. Mean SVL (mm), weight (g) and tail length (mm) of sexual (SAS), WP parthenogen, and RP3 parthenogen hatchlings. Error! Bookmark not defined.

Table 4.13. One-way ANOVA, ANCOVA and Kruskal Wallis* results comparing hatchling attributes among SAS, WP and RP3 M. greyii. Covariate = hatchling SVL.. Error! Bookmark not defined.

Table 4.14. Pearson’s correlation results between maternal SVL (mm) and hatchling attributes. .. Error! Bookmark not defined.

Table 4.15. Pearson’s correlations between Egg weight and hatchling attributes. .. Error! Bookmark not defined.

Table 4.16. ANCOVA results comparing SVL(mm) and weight (g) among SAS, WP and RP3 juveniles. Covariate was egg weight (g). Error! Bookmark not defined.

Table 4.17. Pearson’s correlations between incubation time and hatchling attributes. .. Error! Bookmark not defined.

Table 4.18. Comparison of the differential forms of the Logistic, Gompertz and Von Bertalanffy growth models calculated for male, sexual female, WP parthenogen and RP3 parthenogen M. greyii. *P<0.0001 . Error! Bookmark not defined.

Table 4.19. ANOVA results comparing Asymptote SVL (mm)(S_∞), and raw growth rate (mm/day) and characteristic growth rate among SAS, WP and RP3 individuals. .. Error! Bookmark not defined.

Table 5.1. Kruskal Wallis (*) and One Way ANOVA results comparing emergence time, retreat time and duration of daily activity (hrs) among males, sexual females, WP parthenogens and RP3 parthenogens........ Error! Bookmark not defined.

Table 5.2. Mann-Whitney U-test (*) and Tukey multiple comparisons test comparing emergence time, retreat time and duration of daily activity (hrs) between each type. .. Error! Bookmark not defined.

Table 5.3. One Way ANOVA results comparing the amount of surface time spent in each of the observed behaviours among males, sexual females, WP parthenogens and RP3 parthenogens........ Error! Bookmark not defined.

Table 5.4. Tukey multiple comparisons test comparing time spent sitting motionless (mins) and time spent moving (mins) between each type.... Error! Bookmark not defined.
Table 5.5. One Way ANOVA results comparing the amount of surface time spent in the available habitats among males, sexual females, WP parthenogens and RP3 parthenogens.
Table 5.6. Tukey multiple comparisons test comparing time spent sitting motionless (mins) and time spent moving (mins) between each type.
Table 5.7. Repeated Measures ANOVA results comparing activity pattern among type.
Table 5.8. Time Niche Breadth values (above diagonal line) and Time Niche Overlap values (below diagonal line).
Table 5.9. Kruskal Wallis (*) and One Way ANOVA results comparing temperature preferences among males, sexual females, WP parthenogens and RP3 parthenogens.
Table 5.10. Mann-Whitney U-test comparing minimum body temperature selected (°C) between each type.
Table 5.11. Results of one–way ANOVA tests comparing maximum sprint speed (Vmax) and the mean body temperature at which maximum speed was achieved (Tmax).
Table 5.12 Results of Tukey Post-hoc Test comparing maximum sprint speed (Vmax) between each type.
Table 5.13. Repeated Measures ANOVA results for sprint speed.
Table 5.14. Mean (±SE) optimal sprint speed temperature (M95); lower (L80), upper (U80), and range (B80) of temperatures at which lizards ran at 80% of their maximum; lower (L95), upper (U95), and range (B95) of temperatures at which lizards ran at 95% of their maximum.
Table 5.15. Results of one–way ANOVA and Kruskal-Wallis (*) non-parametric tests comparing sprint speed performance among type. All results were not significant.
Table 6.1. Aggression Score given to each aggressive behaviour observed.
Table 6.2. Treatments for resident intruder trials.
Table 6.3. Ethogram of aggressive behaviours observed between sexual and parthenogenetic M. greyii, with a description of each act.
Table 6.4. The social status of the lizard exhibiting each observed behaviour. ✓ indicates behaviour was performed.
Table 6.5. Aggressive behaviours performed by each lizard type (male, sexual female, WP, RP3) under novel and resident vs intruder (R vs I) conditions. ✓ indicates behaviour was performed.
Table 6.6. Results of One-way ANOVAs comparing aggression levels among males, sexual females, WP parthenogens and RP3 parthenogens.
Table 6.7. Results of Tukey Post Hoc test comparing aggression levels between each lizard type.
Table 6.8. Results of paired t-tests comparing aggression levels between sexuals and parthenogens.
Table 6.9. Results of independent t-tests comparing aggression of sexual males and females towards WP and RP3 parthenogens;**Error! Bookmark not defined.**

Table 6.10. Results of paired t-tests comparing aggression of WP ad RP3 parthenogens towards males and sexual females;**Error! Bookmark not defined.**

Table 6.11. Results of One-way ANOVAs comparing aggression levels between treatments. ..**Error! Bookmark not defined.**

Table 6.12. Results of independent t-tests comparing aggression levels between males and sexual females.**Error! Bookmark not defined.**

Table 6.13. Results of Bonferroni Post Hoc test comparing food consumption among lizard of each social status (dominant, subordinate, unclear).....**Error! Bookmark not defined.**

Table 6.14. Results of Repeated Measures ANOVA comparing food acquisition between sexuals and parthenogens..............**Error! Bookmark not defined.**

Table 6.15. Results of Repeated Measures ANOVA comparing food acquisition between each lizard type.**Error! Bookmark not defined.**

Table 6.16. Results of Bonferroni Post Hoc test comparing change in weight (g) among lizards of differing social status (dominant, subordinate, unclear). ...**Error! Bookmark not defined.**

Table 6.17. Results of Tukey Post Hoc test comparing change in weight (g) among lizards of each type..............................**Error! Bookmark not defined.**

Table 6.18. Results of Repeated Measures ANOVA comparing aggression of residents and intruders between trials with sexual residents and parthenogen intruders and trials with parthenogen residents and sexual intruders.....**Error! Bookmark not defined.**

Table 6.19. Results of independent t-tests comparing aggression levels between sexual residents and parthenogen residents and between sexual intruders and parthenogen intruders. ...**Error! Bookmark not defined.**

Table 6.20. Results of independent t-tests comparing aggression of sexual residents towards WP intruders and sexual residents towards RP3 intruders. ...**Error! Bookmark not defined.**

Table 6.21. Results of independent t-tests comparing aggression of parthenogen residents towards male intruders and parthenogen residents towards female intruders. ...**Error! Bookmark not defined.**

Table 6.22. Results of Repeated Measures ANOVA comparing food consumption of residents and intruders for trials with sexual residents and parthenogen intruders and trials with parthenogen residents and sexual intruders.....**Error! Bookmark not defined.**

Table 6.23. Results of independent t-tests comparing food consumption between sexual and parthenogen residents, and between sexual and parthenogen intruders...**Error! Bookmark not defined.**

Table 6.24. Results of Repeated Measures ANOVA comparing change in weight (g) of residents and intruders between trials with sexual residents and parthenogen intruders and trials with parthenogen residents and sexual intruders. ...**Error! Bookmark not defined.**

Table 6.25. Results of independent t-tests comparing change in weight (g) between sexual and parthenogen residents and between sexual and parthenogen intruders. ...**Error! Bookmark not defined.**
Table 7.1. Number of males, sexual females, WP parthenogens and RP3 parthenogen infected with helminthes, protozoa or both forms of parasites.

Table 7.2. Number of sexual (males and females pooled), WP parthenogen and RP3 parthenogen M. greyii with endoparasites.
Abstract

Menetia greyii, a small Australian skink, has recently been determined to be a species complex that consists of both sexual and parthenogenetic taxa (Adams et al. 2003). In total, seven distinct taxa have been identified in the south-central region of Australia. This includes three sexual taxa, three apparent parthenogenetic lineages, and one lizard of uncertain status.

The study population occurs near Bundey Bore station in the semi-arid region of South Australia (approximately 160km north east of Adelaide). At this site, one sexual taxon (SAS) and two all-female parthenogenetic taxa (WP and RP3) were found to occur in sympatry. In a search for ecological differences, I examined spatial, thermal, physiological and morphological niche relationships in the parthenogenetic and sexual forms. Capture rates were used to determine microhabitat and macrohabitat use in the field. The use of different microhabitats and the amount of time spent occupying different exposures (sun vs. shade) were also examined under laboratory conditions. Thermal preferences, physiological performance (sprint speed ability) and daily activity periods were investigated in the laboratory. The study failed to find any major differences among the different taxa that would indicate they are partitioning resources and therefore explain how the sexual and parthenogenetic forms are coexisting. The only difference observed was that the parthenogens expressed superior sprinting ability, running faster than the sexuals over a range of temperatures. In addition, I found that sexual and parthenogenetic females within this population differed very little in their reproductive effort and output, indicating that RP3 and WP parthenogens possess a reproductive advantage over sexual females as a result of not having to produce males (Williams 1975, Maynard-Smith 1978, Bell 1982). In staged interactions between pairs of sexual and parthenogen individuals, the parthenogens were more aggressive and dominated the sexuals. As a result, the parthenogens were able to outcompete the sexuals for food items. This had serious consequences on fitness, with the sexuals losing significantly more weight than the parthenogens. All of these factors would suggest that the parthenogens should eliminate the sexuals at
Bundey Bore. Despite this, the parthenogenetic females at Bundey Bore do not outnumber the sexual subpopulation. This raises the question of how the sexuals are persisting. An examination of endoparasites in the scats of parthenogen and sexual *M. greyii* found that WP parthenogens had significantly higher parasite prevalence than sexuals. Further to this, there is evidence of matings occurring within the study population between sexual males and WP parthenogen females with five tetraploid males being captured. Therefore, WP parthenogens may be suffering from destabilising hybridization. These factors may account for why the parthenogens (or at least the WP parthenogens) have not competitively excluded sexual *M. greyii* from Bundey Bore. Other possible reasons are discussed in the general discussion in Chapter 8.
Declaration

“I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.’

Clare Griffin.
Acknowledgements

First off, and foremost, I’d like to thank my supervisor, Professor Mike Bull, for his unwavering support, guidance, optimism and patience. And, perhaps even more importantly, for his wonderful dry humour and love of a good glass of red.

Thanks to the guys at the South Australian Museum (SAM). To my co-supervisor Mark Adams and Ralph Foster for introducing me to this fascinating critter and for undertaking the genetics component of this study (which I still don’t fully understand!! hehe). To Terry Reardon for his help in the field.

Thanks to Gary (*Egernia*) Hallas for introducing me to the world of parasitology, for his hard work in the lab and his advice.

Leslie Morrison, without her I would never have been able to maintain such a successful lab colony. Her unrelenting search for food stuffs that were both small enough for these tiny lizards, and in plentiful supply was much appreciated. She was a pleasure to work with.

Thanks to my fellow ecology ‘Bull’ lab members – it was a great lab to be a part of, and a much enjoyed experience. I am especially grateful for the cherished friendship founded with Radika. Thanks also to Kris Murray, for all the laughs, and to Greg Kerr, you are an inspiration to us all.

Thanks to the Bundey Bore crew for making field work a delight. And to my field volunteers for their enthusiasm and very quick hands. Thanks also to Ron and Leona Clark, for access to their property, and use of the homestead at Bundey Bore.

Mike Kearney for his advice, and encouragement.

Thanks to Travis How, for providing me with employment and a constant reminder that there was life after writing!! I appreciate it all.
And finally a rather large thankyou to my partner Brendon for everything (including keeping me sane - not such an easy task, hehe), I love you. To my mum, who’s perfectly timed messages and gifts were a tremendous help. And to the rest of my family and friends for their unconditional support and for not asking too often ‘when did I think I would be finished!!’.