EXOGENOUS PURINES INDUCE DIFFERENTIAL RESPONSES IN THE PROXIMAL AND DISTAL REGIONS OF THE SPHINCTER OF ODDI: PARTIAL CHARACTERISATION OF THE PURINERGIC RECEPTOR SUB-TYPES INVOLVED

A thesis submitted for the degree of Doctor of Philosophy

By

Charmaine Michelle Woods
Bachelor of Biotechnology (Honours)

Pancreatobiliary Research Group
Department of General and Digestive Surgery
School of Medicine
Faculty of Health Sciences
Flinders University
Australia
TABLE OF CONTENTS

Summary of Thesis..1
Publications from the studies in this thesis...4
Manuscripts...4
Abstracts and Conference Presentations..4
Declaration..7
Acknowledgements...8
Abbreviations...10
Structure of Thesis..11
History of candidature...11
Thesis chapters...11
Location of figures...13
1 Introduction...1
 1.1 Overview...1
 1.2 Anatomy of the SO and duodenum ...1
 1.2.1 General extra-hepatic biliary anatomy...1
 1.2.2 Duodenal anatomy..1
 1.2.3 SO anatomy and function...1
 1.3 Control of SO spontaneous activity ..1
 1.3.1 ICC...1
 1.3.2 Innervation of SO..1
 1.3.3 Integrated model of spontaneous GI motility...1
 1.3.4 Neural reflexes between the SO and other organs...1
 1.3.5 Possible involvement of purines in SO motility..1
 1.4 Purines..1
 1.4.1 Purine receptors...1
 1.4.2 Agonists and antagonists ...1
 1.4.3 Effect of purines on SO motility..1
 1.4.4 Effect of purines on other sphincters..1
 1.4.5 Effects of purines on small intestinal motility...1
 1.5 Summary..1
 1.6 Hypothesis and aims..1
 1.6.1 Overall hypothesis...1
 1.6.2 Aims..1
 1.6.3 Research rationale...1
2 Methods..2
 2.1 Possums and animal ethics approval..2
 2.2 In vitro studies...2
 2.2.1 Tissue harvest...2
 2.2.2 Duodenal muscle strips..2
 2.2.3 SO muscle rings...2
 2.2.4 Reagents used..2
 2.2.5 Experimental protocols...2
 2.2.6 Analysis of recordings..2
2.2.7 Statistical analysis

2.3 In vivo studies

2.3.1 Anaesthesia

2.3.2 Surgical preparation

2.3.3 Experimental protocols

2.3.4 Analysis of recordings

2.3.5 Statistical analysis

2.4 Immunohistochemical Studies

3 Effect of exogenous ATP and adenosine on spontaneous SO and duodenal contractile activity in vitro

3.1 Introduction

3.2 Methods

3.3 Results

3.3.1 SO

3.3.2 Duodenum

3.4 Discussion

3.4.1 Spontaneous SO motility and ATP

3.4.2 Spontaneous SO motility and adenosine

3.4.3 Spontaneous duodenal motility and ATP

3.4.4 Spontaneous duodenal motility and adenosine

3.4.5 SO regional selectivity of purine responses

3.4.6 Localisation of purinergic receptors

3.5 Conclusions

4 Pharmacological characterisation of P2 receptors mediating the ATP-induced tri-phasic response in spontaneous duodenal motor activity in vitro

4.1 Introduction

4.2 Methods

4.3 Results

4.3.1 Non-selective P2 receptor antagonists

4.3.3 Preliminary experiments with Ecto-ATPase inhibitor: ARL67156

4.4 Discussion

4.5 Conclusion

5 Pharmacological characterisation of P2 receptors mediating the ATP-induced bi-phasic response in SO motility in vitro

5.1 Introduction

5.2 Methods

5.3 Results

5.3.1 Non-selective P2 receptor antagonists

5.3.2 P2 receptor agonists
5.3.3 Preliminary experiments with Ecto-ATPase inhibitor: ARL67156
5.4 Discussion
5.5 Conclusion

Summary 1: Exogenous ATP induces a complex response on spontaneous SO and duodenal motility in vitro.

6 Pharmacological identification of P1 receptors mediating the inhibitory effects of exogenous adenosine on spontaneous duodenal activity in vitro.
6.1 Introduction
6.2 Methods
6.3 Results
6.3.1 P1 receptor antagonists
6.3.2 P1 receptor agonists
6.4 Discussion
6.5 Conclusion

Summary 2: Exogenous adenosine decreases spontaneous SO and duodenal motility in vitro.

7 Pharmacological characterisation of P1 receptors mediating the inhibitory effects of exogenous adenosine on SO motility in vitro.
7.1 Introduction
7.2 Methods
7.3 Results
7.3.1 P1 receptor antagonists
7.3.2 Preliminary experiments with P1 receptor agonists
7.4 Discussion
7.5 Conclusion

Summary 3: Exogenous adenosine and ATP increase SO motility in vivo, via stimulation of purinergic receptors on nerves.

8 Effect of exogenous adenosine and ATP on SO motility in vivo.
8.1 Introduction
8.2 Methods
8.3 Results
8.3.1 Effect of exogenous ATP or adenosine on SO motility in vivo
8.3.2 TTX pre-treatment
8.3.3 Atropine and hexamethonium pre-treatment
8.3.4 Inhibition of NOS: L-NAME
8.4 Discussion
8.5 Conclusion

Summary 3: Exogenous adenosine and ATP increase SO motility in vivo, via stimulation of purinergic receptors on nerves.

9 General discussion
9.1 Overview of findings
9.2 Functional significance of activation of purinergic receptors in the SO and further studies
9.2.1 Potential effects of purine-evoked responses on SO function: theoretical considerations
9.2.2 CBD distension and pain perceptionError! Bookmark not defined.
9.2.3 Summary.......................................Error! Bookmark not defined.
9.3 Conclusions......................................Error! Bookmark not defined.

Appendix 1: Attempted localisation of P1 receptors in SO and duodenum..Error! Bookmark not defined.
A1.1 Introduction.......................................Error! Bookmark not defined.
A1.2 Methods..Error! Bookmark not defined.
A1.2.1 Tissue collection..............................Error! Bookmark not defined.
A1.2.2 Adenosine receptor immunohistochemistry. Error! Bookmark not defined.
A1.2.3 ICC immunohistochemistryError! Bookmark not defined.
A1.2.4 Microscopy and image analysisError! Bookmark not defined.
A1.3 Results..Error! Bookmark not defined.
A1.3.1 P1 immunohistochemistry in the duodenumError! Bookmark not defined.
A1.3.2 P1 control peptide experiments.... Error! Bookmark not defined.
A1.3.3 ICC immunohistochemistryError! Bookmark not defined.
A1.4 DiscussionError! Bookmark not defined.
A1.5 Summary and conclusion....................Error! Bookmark not defined.
A1.6 Recent immunohistochemical studies using purinergic receptor antibodies in GI tissuesError! Bookmark not defined.

10 References..Error! Bookmark not defined.
SUMMARY OF THESIS

The sphincter of Oddi (SO) is a neuromuscular structure located at the junction of the bile and pancreatic ducts with the duodenum. The primary functions of the SO are to regulate the delivery of bile and pancreatic juice into the duodenum, and to prevent reflux of duodenal contents into the biliary and pancreatic systems. Neural, hormonal or functional disturbances of biliary motility can lead to painful and sometimes life threatening clinical conditions, such as SO dysfunction and acute pancreatitis. Clearly understanding the regulation of biliary and duodenal motility patterns is necessary and may provide useful pharmacological sites for drug development to aid in the treatment of these diseases.

Spontaneous activity of the SO is regulated by complex interactions between the enteric nervous system, hormones, possibly interstitial cells of Cajal and other bioactive agents, together with modulation via neural reflexes between the duodenum, common bile duct/gallbladder, and stomach. Purines are one group of neurotransmitters/regulatory agents that have been shown to effect gastrointestinal motility, however their functions in the regulation of SO motility have not been elucidated.

The studies described in this thesis used in vitro organ bath techniques and in vivo preparations to determine the effects of exogenous purines on possum SO and duodenal motility. The possum SO has been extensively characterized and is an excellent model for motility studies. In vitro, exogenous adenosine was found to decrease spontaneous activity in both
the SO and duodenum. In contrast exogenous ATP induced both excitatory and inhibitory responses in the SO and duodenum. Interestingly, the adenosine and ATP-induced effects were predominantly exhibited by the proximal portion of the SO (proximal-SO), with no or little effect observed in the distal portion of the SO (distal-SO). These data support the hypothesis that the SO is comprised of different functional components that can act differently in response to certain stimuli, and highlights the importance of studying each of the SO components.

Agonists and antagonists, together with immunohistochemical studies, were used in an attempt to identify the P1 and P2 receptor sub-types responsible for mediating the adenosine- and ATP-induced responses. In the duodenum the adenosine-induced decrease in spontaneous activity was likely to be mediated by A_{2A} and A_3 receptors, but the receptors mediating the proximal-SO response could not be identified. In the duodenum ATP induced a complex non-neural response consisting of a $P2X_1$, and $P2Y_2$ and/or $P2Y_4$ mediated immediate inhibition. This was followed by a return to baseline activity or small excitation. The response concluded with a late inhibitory response, likely to be mediated by $P2Y_1$ receptors, but the effects of other $P2Y$ receptors could not be excluded. In contrast, ATP application to the proximal-SO evoked a partially neurally mediated early excitation, likely via $P2X$ receptors, followed by an inhibition of activity, likely via activation of non-neural $P2Y_2$ and/or $P2Y_4$ receptors.

In vivo studies with exogenous application of adenosine and ATP to the SO activated neural pathways to produce increased motor activity.
Characterisation of these neural pathways found ATP and/or adenosine to activate excitatory cholinergic motor neurons. ATP also activated an inhibitory nicotinic/nitrergic pathway.

This is the first comprehensive investigation of the possible involvement of purines in the regulation of SO motility. These studies demonstrate that exogenous purines influence SO and duodenal motility, inducing complex neural and non-neural responses, acting via multiple P1 and P2 receptors. It now remains to be determined if endogenously released purines induce similar responses, together with elucidation and location of the receptor sub-types involved.
PUBLICATIONS RESULTING FROM THE STUDIES IN THIS THESIS

Manuscripts

Note: these publications are included at the end of this thesis

Abstracts and Conference Presentations

DECLARATION

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

...

Charmaine M. Woods

September 30th, 2005
ACKNOWLEDGEMENTS

I wish to take the opportunity to thank a number of people whose assistance has been instrumental in the studies associated with this thesis.

I am indebted to my supervisor Associate Professor Gino Saccone for his tireless support and encouragement during my candidature. I wish to thank Gino together with Dr Steve Johnson and Professor Jim Toouli for their useful discussions and comments regarding the preparation of this thesis, associated manuscripts and conference presentations.

I am most grateful for the technical expertise, nimble fingers, patience and friendship of Ann Schloithe, especially in teaching me the fine surgery required for these studies and for her preparation of the pico-manometry catheters. I am also grateful for Ann’s help together with aid from the statistical consultant Lynne Giles that was essential for the design and interpretation of the statistical analyses associated with these studies. The assistance and friendship of staff and students in the Pancreatobiliary Research Laboratory and other research groups, both past and present, was especially helpful. In particular I wish to thank Marlene Grivell, Aaron Citti, Adrian Meedeniya, Lisa De Candia and Magali Chauvet.

There are a number of people who assisted with the immunohistochemical studies that all require my thanks for their time and efforts: Professor Marcello Costa, Associate Professor Sean Ward, Jim Brennan, and Dr Shiyong Yuan.
I wish to thank Dr Italo Biaggioni of Vanderbilt University, USA for the kind donation of the A_{2B} receptor antagonist IPDX used in the *in vitro* studies.

I would especially like to mention the smiling and helpful services of the staff in Medical Illustration and Media together with the staff in the Animal House, thank you all for your help.

Finally, I wish to thank my husband, family and friends for their patience, encouragement and tireless support during the time taken to complete these studies.
ABBREVIATIONS

The following abbreviations are used throughout the text, figures and figure legends of this thesis.

ATP Adenosine triphosphate
CBD Common bile duct
CCK-8 Cholecystokinin octapeptide
EFS Electrical field stimulation
ENS Enteric nervous system
EPSP Excitatory post synaptic potential
GI Gastrointestinal
IA Intra-arterial
ICC Interstitial cells of Cajal
IV Intravenous
IPSP Inhibitory post synaptic potential
L-NAME N^ω-nitro-L-arginine methyl ester
NANC Non-adrenergic non-cholinergic
NO Nitric oxide
NOS Nitric oxide synthase
PBS Phosphate buffered saline
SEM Standard error of the mean
SO Sphincter of Oddi
TTX Tetrodotoxin
UTP Uridine triphosphate

Note: abbreviations for purinergic drugs are listed in Table 1.2a and Table 1.2b
STRUCTURE OF THESIS

History of candidature

My candidature for this thesis commenced in May 1999. The literature was surveyed during 1999 and preliminary studies were performed, leading to the development of the overall hypothesis and specific hypotheses. Experimental studies were performed from 2000-2002 on a full-time basis. Subsequently during 2003-submission the thesis was compiled on a part-time basis whilst undertaking full-time employment. During my candidature there has been considerable progress in understanding the role of purines in the small and large intestine, with regard to both secretory and motility functions, and in the localization of purinergic receptor sub-types. However there have been very few developments regarding the understanding of purines in the biliary tree.

Thesis chapters

The structure of this thesis conforms to Flinders University guidelines. This thesis is presented in the following chapters.

Chapter 1 contains an overview of the relevant literature up to the time I commenced experimental studies (end 1999). This literature review has been updated to include key findings that aid in our understanding of biliary motility, but have bearing on the hypotheses generated or the experimental design. A major component of this chapter is a review of purinergic receptors, their agonists and antagonists. As information was limited regarding the use of these drugs in biliary or possum tissues, information
published prior to and during the period of experiments (pre1999-2002) is presented with regard to their use in the small intestine, specifically the guinea-pig ileum. Publications that directly relate to the interpretation of the data presented in this thesis that have been published since 2003 are included in the discussion section of the appropriate Results chapter.

Chapter 1 concludes with the presentation of the general hypothesis and specific hypotheses, followed by the research aims. It should be noted that technical limitations associated with the use of SO tissues resulted in the possum duodenum being used to evaluate drug concentration ranges. Therefore, the hypotheses and aims were expanded to incorporate a comparison between purinergic responses and receptors in the SO and duodenum.

Chapter 2 describes the methodology, experimental, analysis and statistical protocols used for the in vitro and in vivo studies.

Chapters 3-8 present the results of the experimental studies. Each chapter begins with a brief introduction, which builds on the information presented in the literature review and the findings presented in previous chapters. This is followed by the aims of the particular study, a brief methods section, and the results of the investigations. Each of these chapters contains an interpretation and comprehensive discussion of the data presented and refers to discussion in previous chapters to maintain continuity.
To aid interpretation of the data a number of summary diagrams are presented. **Summary 1** summarises the *in vitro* investigations with adenosine, in both the SO and duodenum. **Summary 2** summarises the *in vitro* investigations with ATP, in both the SO and duodenum. **Summary 3** summarises the *in vivo* investigations of adenosine and ATP in the SO.

Chapter 9 contains a general discussion. As the previous chapters have included a comprehensive discussion of the data presented, the purpose of this final chapter is to relate the findings to the original hypotheses. This section concludes with suggestions for future research.

Appendix 1 contains the methodology and results of the immunohistochemical studies. These immunohistochemical studies were performed prior to the *in vitro* antagonist experiments in an attempt to identify the purine receptor sub-types present in the possum SO and duodenum, and their distribution. However due to non-specificity of the antibodies tested the results were equivocal and no conclusions could be drawn, but are presented for completeness.

The thesis concludes with a list of references to publications mentioned in the text.

Location of figures

For minimize disruption to the text, all figures and tables are located in a group near the end or prior to the discussion of each chapter.