Dynamics of stream and groundwater exchange using environmental tracers

submitted by
Jodie Lee Pritchard BSc (Hons)
As requirement in full for the degree of
Doctor of Philosophy
in the
School of Chemistry, Physics and Earth Sciences,
Faculty of Science and Engineering
Flinders University of South Australia
August 2005
TABLE OF CONTENTS

TABLE OF CONTENTS... 1

LIST OF FIGURES... VIII

LIST OF TABLES.. XVII

LIST OF SYMBOLS... XIX

ABSTRACT ... XXII

DECLARATION OF ORIGINALITY .. XXIV

PUBLICATIONS ASSOCIATED WITH THIS THESIS .. XXV

ACKNOWLEDGEMENTS.. XXVIII

1 INTRODUCTION ... 1

 1.1 SCOPE.. 1

 1.1 PREVIOUS WORK... 2

 1.2 AIMS OF THE THESIS ... 3

 1.3 APPLICATION OF ENVIRONMENTAL TRACERS .. 4

 1.4 OUTLINE OF ENVIRONMENTAL TRACERS USED ... 6

 1.4.1 Chloride ... 6

 1.4.2 Radon-222 ... 7

 1.4.3 Stable isotopes of water .. 10

 1.4.4 Strontium isotopes and concentrations ... 12

 1.4.5 Tracer comparison .. 14

 1.5 STUDY AREA OVERVIEW ... 16

 1.5.1 Physical Setting .. 16

 1.5.2 Climate .. 16

 1.5.3 Hydrology .. 20

 1.5.4 Hydrogeology ... 21
1.5.5 Land use ..22

1.6 CHAPTER DESCRIPTIONS ..22

1.6.1 Chapter 1: Introduction...22
1.6.2 Chapter 2: Methods ...23
1.6.3 Chapter 3: Dynamics of stream and groundwater exchange using 222Rn. 23
1.6.4 Chapter 4: Quantifying groundwater discharge to streams using 222Rn .. 24
1.6.5 Chapter 5: Sources of water to streams using tracer techniques...............24
1.6.6 Chapter 6: Reach scale interpretation of tracer data25
1.6.7 Chapter 7: Conclusions ...25

2 SAMPLING AND ANALYTICAL METHODS ...26

2.1 SITE SELECTION ...26
2.2 BORE AND PIEZOMETER NETWORK ..26
2.3 RUN OF RIVER SITES ..30
2.4 TIME SERIES SITE ...36
2.5 SURFACE WATER AND GROUNDWATER MONITORING37
2.6 SAMPLING METHODOLOGY ..39
 2.6.1 Groundwater sampling..39
 2.6.2 Surface water sampling ...40
 2.6.3 Soil and unsaturated zone pore water sampling41
2.7 SAMPLE PRESERVATION ..42
 2.7.1 Major ion chemistry ..42
 2.7.2 Radon ...42
 2.7.3 Stable isotopes of water ...43
 2.7.4 Strontium ...44
2.8 ANALYTICAL TECHNIQUES ..44
 2.8.1 Field analysis ..44
 2.8.2 Major ion chemistry ..44
2.8.3 Radon .. 46
2.8.4 Stable isotopes of water .. 47
2.8.5 Strontium .. 48
2.8.6 Soils ... 49

2.9 Results ... 51

3 DYNAMICS OF EXCHANGE BETWEEN STREAM WATER, ALLUVIAL GROUNDWATER AND REGIONAL GROUNDWATER USING 222Rn ... 52

3.1 Introduction .. 52
3.2 Results .. 54
 3.2.1 Water level gradients... 54
 3.2.2 End-member 222Rn concentrations .. 57
 3.2.3 Flood recession and baseflow 222Rn concentrations............................. 58
 3.2.4 Emanation of 222Rn from alluvial aquifer material................................ 64
3.3 Discussion .. 65
 3.3.1 Origin of 222Rn in alluvial aquifer .. 65
 3.3.2 Extent of surface water influx to alluvial aquifer 70
 3.3.3 Regional groundwater leakage into the alluvial aquifer......................... 78
3.4 Conclusions .. 81

4 QUANTIFYING GROUNDWATER DISCHARGE TO STREAM FLOW USING 222Rn ... 84

4.1 Introduction .. 84
4.2 Background Theory .. 86
 4.2.1 Estimating groundwater discharge to stream flow 86
 4.2.2 Percentage groundwater discharge to stream flow 93
4.3 Field Results .. 94
 4.3.1 End-member characteristics... 94
4.3.2 In-stream transects...95

4.4 Parameters for estimating 222Rn persistence in stream water.............98
 4.4.1 Stagnant film thickness..98
 4.4.2 Background 222Rn concentration in stream water...............................100

4.5 Modelling 222Rn persistence in stream water...101
 4.5.1 Introduction..101
 4.5.2 Predicting downstream 222Rn concentrations in stream water104
 4.5.3 Background 222Rn concentration in stream water...............................107
 4.5.4 Distance of 222Rn persistence in stream water.....................................109
 4.5.5 Constraining groundwater discharge to stream flow.............................114
 4.5.6 Optimal intervals for sampling 222Rn in stream water.......................126

4.6 Conclusions..132

5 Application of tracer techniques to identify sources of water to stream flow during baseflow & flood recession...134

5.1 Introduction..134
 5.1.1 Background..134
 5.1.2 Objectives..136
 5.1.3 Sampling Strategy...137

5.2 Results...139
 5.2.1 Stream hydrograph...139
 5.2.2 Chloride..141
 5.2.3 Radon-222...142
 5.2.4 Stable isotopes of water...145
 5.2.5 Strontium and 87Sr/86Sr...155
 5.2.6 Time series data...158
5.3 METHODOLOGY FOR USE OF ENVIRONMENTAL TRACERS TO IDENTIFY SOURCES OF GROUNDWATER DISCHARGE TO STREAM FLOW 161

5.3.1 Stream water salinity as an indicator of groundwater discharge to stream flow ... 161

5.3.2 Radon-222 in stream water as an indicator of groundwater discharge to stream flow ... 163

5.3.3 Stable isotopes of water as indicators of groundwater discharge to stream flow ... 170

5.3.4 Strontium and $^{87}\text{Sr}/^{86}\text{Sr}$ as indicators of groundwater discharge to stream flow ... 176

5.4 SOURCES OF GROUNDWATER DISCHARGE TO STREAM FLOW 179

5.4.1 Long-term monitoring .. 179

5.4.2 Flood recession ... 183

5.4.3 Baseflow ... 188

5.5 SPATIAL DISTRIBUTION OF ALLUVIAL GROUNDWATER AND REGIONAL GROUNDWATER CONTRIBUTIONS TO STREAM FLOW 193

5.6 CONCLUSIONS ... 197

6 REACH-SCALE INTERPRETATION OF TRACER DATA 200

6.1 INTRODUCTION .. 200

6.2 FLOOD RECESSION ... 202

6.2.1 Stations 13 to 12 .. 202

6.2.2 Stations 12 to 11 .. 204

6.2.3 Stations 11 to 10 .. 205

6.2.4 Stations 10 to 9 .. 207

6.2.5 Stations 9 to 8 .. 209

6.2.6 Stations 8 to 7 .. 210

6.2.7 Stations 7 to 4 .. 210
6.2.8 Stations 4 to 3 ... 212
6.2.9 Stations 3 to 2 ... 214
6.2.10 Stations 2 to 1 ... 216

6.3 BASEFLOW ... 218
6.3.1 Stations 13 to 12 ... 218
6.3.2 Stations 12 to 11 ... 222
6.3.3 Stations 11 to 10 ... 224
6.3.4 Stations 10 to 9 ... 227
6.3.5 Stations 9 to 8 ... 231
6.3.6 Stations 8 to 7 ... 233
6.3.7 Stations 7 to 5 ... 235
6.3.8 Stations 5 to 4 ... 236
6.3.9 Stations 4 to 3 ... 239
6.3.10 Stations 3 to 2 ... 244
6.3.11 Stations 2 to 1 ... 248

6.4 SPATIAL DISTRIBUTION OF GROUNDWATER DISCHARGE TO STREAM FLOW 250

6.5 CONCLUSIONS ... 254

7 CONCLUSIONS ... 257

7.1 OVERVIEW ... 257

7.2 STREAM WATER AND GROUNDWATER EXCHANGE PROCESSES 258
7.2.1 Extent of stream water and groundwater interaction in alluvial aquifers ... 258
7.2.2 Regional groundwater contribution to alluvial aquifers 258
7.2.3 Groundwater contribution to stream flow 259

7.3 METHOD DEVELOPMENT FOR INVESTIGATING SURFACE WATER AND
GROUNDWATER EXCHANGE .. 261

7.3.1 Surface water and groundwater exchange 261
LIST OF FIGURES

Figure 1.1 Location map of the Wollombi Brook Catchment.
Figure 1.2 Satellite image of Wollombi Brook Catchment (Wollombi township marker: 32°57'00" S, 151°08'00" E).
Figure 1.3 Average monthly rainfall (1889 to 2002) and potential evaporation (1972 to 2002) at Broke (lower Wollombi Brook).
Figure 1.4 Stream discharge (m³ d⁻¹) in the lower Wollombi Brook (Warkworth) and in a mid-catchment tributary (Brickmans).
Figure 2.1 Location of catchment-scale surface water, 'run of river' sampling sites from the Wollombi Brook and its tributaries and locations of piezometer networks and bores.
Figure 2.2 Groundwater monitoring sites: (a) Warkworth (site 1), (b) Fordwich (site 3) and (c) Wollombi (site 10).
Figure 2.3 Cross-sections of the piezometer and bore network set-up at (a) Warkworth (site 1, lower Wollombi Brook), (b) Fordwich (site 3, lower Wollombi Brook) and (c) Wollombi (site 10, mid to upper Wollombi Brook).
Figure 2.4 Surface water sampling stations (a) 21, and (b) 20, located along the Watagan branch of the Wollombi Brook.
Figure 2.5 Timing of field trips compared to daily rainfall at Broke and stream discharge at Warkworth (site 1).
Figure 3.1 Water levels in the Wollombi Brook and adjacent alluvial aquifer compared to groundwater levels in deep and shallow bores in the lower (Warkworth site 1 and Fordwich site 3) and mid to upper (Wollombi site 10) Wollombi Brook measured during flood recession (a, b, c, Mar-01) and baseflow (d, e, f, Nov-01) conditions.
Figure 3.2 The 10th, 25th, 75th and 90th percentiles represent the variation throughout the two-year sampling period (2000-01) of ²²²Rn measured in stream water (SW), alluvial groundwater (AW) and regional groundwater (RW) sampled across the Wollombi Catchment.
Figure 3.3 Warkworth (site 1): ²²²Rn activity (Bq L⁻¹) of groundwater sampled from piezometer network during flood recession (a) May-00, (b) Mar-01 and (c) low flow conditions (baseflow) Nov-01.
Figure 3.4 ²²²Rn activity (Bq L⁻¹) in alluvial groundwater (AW) relative to distance (x) from the stream channel (m) during (a) May-00 flood recession, (b) Mar-01 flood recession and (c) Nov-01 baseflow.
Figure 3.5 Fordwich site: 222Rn activity (Bq L$^{-1}$) of groundwater sampled from piezometer network during (a) Mar-01 flood recession and (b) Nov-01 low flow (baseflow).

Figure 3.6 Wollombi site: 222Rn activity (Bq L$^{-1}$) of groundwater sampled from piezometer network during (a) Mar-01 flood recession and (b) Nov-01 low flow (baseflow) conditions.

Figure 3.7 Steady state 222Rn activity (C_{ss}, Bq L$^{-1}$) in alluvial aquifer sediment profiles located distances of 0, 4 and 23 m from the stream channel at Warkworth.

Figure 3.8 Residence time (T) of water within the alluvial aquifer and the fraction of 222Rn ingrowth represented by the 222Rn concentration measured in the alluvial aquifer ($^{222}R_{\text{meas}}$) divided by the steady state 222Rn emanation from alluvial aquifer material (C_{ss}).

Figure 3.9 Residence time (days) of stream water in the alluvial aquifer at Warkworth during the (a) May-00 and (b) Mar-01 flood recessions and during the (c) Nov-01 low stream flow (baseflow) conditions based on 222Rn ingrowth estimates.

Figure 3.10 Residence time (days) of stream water in the alluvial aquifer at Fordwich during the (a) May-00 flood recession and (b) Nov-01 low flow (baseflow) conditions based on 222Rn ingrowth estimates.

Figure 3.11 Residence time (days) of stream water in the alluvial aquifer at Wollombi during the (a) Mar-01 flood recession and the (b) Nov-01 low stream flow (baseflow) conditions based on 222Rn ingrowth estimates.

Figure 4.1 Stream cross-section, where the radon concentration in stream water ($^{222}Rn_{sw}$) is much higher than the radon concentration in the atmosphere ($^{222}Rn_{atm}$) and radon transfer occurs via molecular diffusion across the hypothetical stagnant boundary layer (z).

Figure 4.2 Stream section showing parameters measured for estimation of stagnant film thickness (z, equation 4.1) in a section of the stream in which there is no groundwater discharge to stream flow.

Figure 4.3 The 10th, 25th, 75th and 90th percentiles represent the variation throughout the two-year sampling period (2000-01) of radon (222Rn) measured in stream water (SW), alluvial groundwater (AW) and regional groundwater (GW) sampled across the Wollombi Catchment.

Figure 4.4 222Rn concentrations (mBq L$^{-1}$) measured in the upper Wollombi Catchment during baseflow conditions (Nov-01).
Figure 4.5 Radon \((^{222}\text{Rn}) \) activities (Bq L\(^{-1}\)) in stream water measured during flood recession (May-00 & Mar-01) and baseflow (Nov-01) in the Wollombi Brook and tributaries compared background levels.

Figure 4.6 The downstream \(^{222}\text{Rn}\) concentration was predicted \((C_{TR}^n) \) equation 4.8) for \(n \) progressively smaller intervals of \(x \) until \(C_{TR}^n \) converged.

Figure 4.7 Example of model output. The predicted \(^{222}\text{Rn}\) concentration \((C_{TR}^n) \) in stream water converged at approximately 40 mBq L\(^{-1}\) where \(C^0 = 280 \) mBq L\(^{-1}\), \(x = 4.5 \) km (divided into >100 equal intervals, \(i \)), \(v = 0.05 \) m s\(^{-1}\), \(h = 0.93 \) m, \(z = 6.7 \times 10^{-5} \) m.

Figure 4.8 \(^{222}\text{Rn}\) concentrations (mBq L\(^{-1}\)) measured in stream water \((C^0) \) during (a) the March-2001 flood recession and (b) under baseflow conditions (Nov-2001) compared to predicted \(^{222}\text{Rn}\) concentrations \((C_{TR}^n) \), based on upstream \(^{222}\text{Rn}\) concentrations and gas exchange and radioactive decay \(^{222}\text{Rn}\) losses.

Figure 4.9 Minimum percentages of (a) alluvial groundwater \((%AGW_{min}) \) and (b) regional groundwater \((%RGW_{min}) \) discharges to stream flow during flood recession (Mar-01) and baseflow (Nov-01).

Figure 4.10 \(^{222}\text{Rn}\) activities (mBq L\(^{-1}\)) during (a) flood recession (Mar-01) and (b) baseflow (Nov-01) compared to predicted \(^{222}\text{Rn}\) activities \((C_{max}^0) \) required at the upstream sampling station (due to gas exchange and radioactive decay losses) to reproduce actual \(^{222}\text{Rn}\) activities downstream \((C^n) \).

Figure 4.11 Maximum and minimum percentages of alluvial groundwater contribution to stream flow during (a) flood recession (Mar-01) and (b) baseflow (Nov-01).

Figure 4.12 Maximum and minimum percentages of regional groundwater contribution to stream flow during (a) flood recession (Mar-01) and (b) baseflow (Nov-01).

Figure 4.13 Relationships between average stream velocity \((v) \), average stream height \((h) \) and distance between sampling stations \((x) \) for constraining limits of alluvial and regional groundwater discharge to stream flow.

Figure 5.1 Conceptual diagram of alluvial groundwater (AW) and regional groundwater (RW) discharge to stream flow.

Figure 5.2 Stream discharge (m\(^3\) d\(^{-1}\)) hydrographs monitored in the lower Wollombi Brook (Warkworth and Bulga) and in a mid-catchment tributary (Brickman’s Bridge).
Figure 5.3 Chloride (Cl\(^-\)) concentrations (mg L\(^{-1}\)) in stream water measured during flood recession (Mar-01) and baseflow (Nov-01) in the Wollombi Brook and tributaries. The 10\(^{th}\), 25\(^{th}\), 75\(^{th}\) and 90\(^{th}\) percentiles represent the variation throughout a two-year sampling period (2000-01) of Cl\(^-\) measured in surface water (SW), alluvial groundwater (AW) and regional groundwater (RW) sampled across the Wollombi Catchment.

Figure 5.4 Radon (\(^{222}\)Rn) activities (Bq L\(^{-1}\)) measured in stream water during flood recession (Mar-01) and baseflow (Nov-01) in the Wollombi Brook and tributaries compared to background concentrations. The 10\(^{th}\), 25\(^{th}\), 75\(^{th}\) and 90\(^{th}\) percentiles represent the variation throughout a two-year sampling period (2000-01) of \(^{222}\)Rn measured in surface water (SW), alluvial groundwater (AW) and regional groundwater (RW) sampled across the Wollombi Catchment.

Figure 5.5 (a) Oxygen-18 (\(\delta^{18}\)O) and (b) deuterium (\(\delta^{2}\)H) values (‰ VSMOW) in stream water measured during flood recession (Mar-01) and baseflow (Nov-01) in the Wollombi Brook and tributaries. The 10\(^{th}\), 25\(^{th}\), 75\(^{th}\) and 90\(^{th}\) percentiles represent the variation throughout a two-year sampling period (2000-01) of \(\delta^{18}\)O and \(\delta^{2}\)H measured in surface water (SW), alluvial groundwater (AW) and regional groundwater (RW) sampled across the Wollombi Catchment.

Figure 5.6 Deuterium excess (\(d\)-excess) values in stream water measured during flood recession (Mar-01) and baseflow (Nov-01) in the Wollombi Brook and tributaries compared to the Global Meteoric Water Line (GMWL). The 10\(^{th}\), 25\(^{th}\), 75\(^{th}\) and 90\(^{th}\) percentiles represent the variation throughout a two-year sampling period (2000-01) of \(d\)-excess measured in surface water (SW), alluvial groundwater (AW) and regional groundwater (RW) sampled across the Wollombi Catchment.

Figure 5.7 Soil moisture content and \(\delta^{2}\)H signature in unsaturated soils located (a) 2 m, (b) 6 m, (c) 21 m, (d) 4 m, (e) 10 m and (f) 23 m from the stream channel at sampling station 1 (Warkworth) during (a, b, c) flood recession (Mar-01) and (d, e, f) baseflow (Nov-01) conditions.

Figure 5.8 Soil moisture content and \(d\)-excess in unsaturated soils located (a) 2 m, (b) 6 m, (c) 21 m, (d) 4 m, (e) 10 m and (f) 23 m from the stream channel at sampling station 1 (Warkworth) during (a, b, c) flood recession (Mar-01) and (d, e, f) baseflow (Nov-01) conditions.

Figure 5.9 The strontium concentration (Sr\(^{2+}\) mg L\(^{-1}\)) in stream water measured during baseflow (Nov-01) separated into the main stem (Brook), two
major branches (Watagan and South) and tributaries. The 10th, 25th, 75th and 90th percentiles represent the variation throughout a two-year sampling period (2000-01) of Sr^{2+} measured in surface water (SW), alluvial groundwater (AW) and regional groundwater (RW) sampled across the Wollombi Catchment.

Figure 5.10 Strontium isotope ratios ($^{87}\text{Sr}/^{86}\text{Sr}$) in stream water measured during baseflow (Nov-01) separated into the main stem (Wollombi Brook) and two major branches (Watagan and South). The 10th, 25th, 75th and 90th percentiles represent the variation throughout a two-year sampling period (2000-01) of $^{87}\text{Sr}/^{86}\text{Sr}$ measured in surface water (SW), alluvial groundwater (AW) and regional groundwater (RW) sampled across the Wollombi Catchment.

Figure 5.11 ‘Long-term’ changes in (a) Cl$^-$ concentrations, (b) δ^2H and δ^{18}O, and (c) d-excess in the Wollombi Brook in comparison to (d) stream water discharge at Brickman’s Bridge (site ‘TB’, tributary to the Wollombi Brook) and daily rainfall at Broke (site ‘4’).

Figure 5.12 Conceptual diagram of ^{222}Rn loss and gain from the Wollombi Brook between surface water sampling stations 0 and n.

Figure 5.13 Schematic δ^2H-δ^{18}O plot demonstrating the difference in slope (m) between surface water and groundwater evaporation lines in a temperate climate.

Figure 5.14 Conceptual diagram demonstrating that similar changes in the d-excess of stream water can be caused by different processes (indicated by arrows).

Figure 5.15 Conceptual shifts in stream water δ^2H-δ^{18}O slopes (m) and δ^2H between consecutive surface water sampling stations (from point 1 to 2), or between successive sampling times.

Figure 5.16 Conceptual changes in stream water $^{87}\text{Sr}/^{86}\text{Sr}$ and Sr^{2+} concentration in response to evaporation from the stream channel, rainfall dilution and groundwater discharge from basalt and silicate aquifers.

Figure 5.17 Strategy used for identifying sources of water to stream flow between sampling periods based on δ^2H-δ^{18}O and Cl$^-$ data.

Figure 5.18 Major sources of water to the Wollombi Brook at the “time series” surface water sampling station between October 2000 and January 2002 in response to daily rainfall (at Broke) and changes in stream discharge (at Brickman’s).
Figure 5.19 Surface water $\delta^{2}H$-$\delta^{18}O$ evaporation lines for long-term “time series” sampling, and “snapshot” flood recession (Mar-01) and baseflow (Nov-01) sampling.

Figure 5.20 $\delta^{2}H$-$\delta^{18}O$ signatures measured in alluvial groundwater (AW), regional groundwater (RW), the Wollombi Brook (Brook) and tributaries in relation to the Global Meteoric Water Line (GMWL) during (a) flood recession (Mar-01) and (b) baseflow (Nov-01) conditions.

Figure 5.21 Unsaturated zone (UZ) $\delta^{2}H$-$\delta^{18}O$ signatures compared to $\delta^{2}H$-$\delta^{18}O$ signatures in the Wollombi Brook (Brook), alluvial groundwater (AW), regional groundwater (RW) and the Global Meteoric Water Line (GMWL) during (a) flood recession (Mar-01, located 2, 6 and 21 m from the stream channel) and (b) baseflow (Nov-01, located 4, 10 and 23 m from the stream channel) conditions.

Figure 5.22 Alluvial groundwater (AW) $\delta^{2}H$-$\delta^{18}O$ evaporation line at Fordwich (station site 3) during flood recession (Mar-01) in relation to the Global Meteoric Water Line (GMWL).

Figure 5.23 $^{87}Sr/^{86}Sr$ versus inverse Sr^{2+} concentration of stream water (Brook), alluvial groundwater (AW) and regional groundwater (RW) during (a) flood recession (Mar-01) and (b) baseflow (Nov-01) conditions. Theoretical mixing lines were constructed between stream water and regional groundwater end-members demonstrating potential percentages of regional groundwater discharge to stream flow.

Figure 5.24 Conceptual diagram of changes in stream channel morphology and discharge characteristics from the upper to the lower Wollombi Brook.

Figure 6.1 Schematic diagram of two-component end-member mixing.

Figure 6.2 $\delta^{2}H$ and $\delta^{18}O$ (‰ VSMOW) composition of stream water (stations 13 and 12), alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during flood recession (Mar-01).

Figure 6.3 $\delta^{2}H$ and $\delta^{18}O$ (‰ VSMOW) composition of stream water (stations 11 and 10) and tributaries, alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during flood recession (Mar-01).

Figure 6.4 $\delta^{2}H$ and $\delta^{18}O$ (‰ VSMOW) values in stream water (stations 7, 5 and 4), alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during flood recession (Mar-01).
Figure 6.5 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 4 and 3), alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during flood recession (Mar-01).

Figure 6.6 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 3 and 2), tributary “T1”, alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during flood recession (Mar-01).

Figure 6.7 Changes in the strontium isotope ratio (87Sr/86Sr) and inverse strontium concentration (1/Sr$^{2+}$, L mg$^{-1}$) in the Wollombi Brook between stream water sampling stations 3 and 1 in comparison to alluvial groundwater (AW) and regional groundwater (RW) values during flood recession (Mar-01). Theoretical mixing lines were constructed between stream water at sampling station 3 and (a) alluvial groundwater, and (b) regional groundwater, to estimate the potential proportions of groundwater discharge to stream flow between stations 3 and 1.

Figure 6.8 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 2 and 1), alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during flood recession (Mar-01).

Figure 6.9 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 13 and 12), alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during baseflow (Nov-01).

Figure 6.10 Change in 87Sr/86Sr and inverse Sr$^{2+}$ concentration of stream water (SW) in between stations 13 and 11 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 13, RW and (a) maximum AW, and (b) minimum AW to estimate the proportions of each water source present in stream water at sampling station 11.

Figure 6.11 Schematic diagram of three-component end-member mixing.

Figure 6.12 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 12 and 11), tributaries (T8, T9 and T10) alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during baseflow (Nov-01).

Figure 6.13 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 11 and 10), tributary water (14 and T6), alluvial groundwater (AW) and regional
groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during baseflow (Nov-01).

Figure 6.14 Change in 87Sr/86Sr and inverse Sr$^{2+}$ concentration in stream water (SW) between stations 11 and 10 compared to tributary water (14) alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 11, tributary 14 and (a) maximum AW, and (b) minimum AW values to estimate proportions of each water source present in stream water at sampling station 10.

Figure 6.15 Change in 87Sr/86Sr and inverse Sr$^{2+}$ concentration in stream water (SW) in between stations 10 and 9 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 10, (a) maximum AW and minimum RW values, and (b) minimum AW and maximum RW values to estimate proportions of each water source present in stream water at sampling station 9.

Figure 6.16 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 9 and 8), alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during baseflow (Nov-01).

Figure 6.17 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 8 and 7), alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during baseflow (Nov-01).

Figure 6.18 δ^2H and δ^{18}O (‰ VSMOW) values in stream water (stations 5 and 4), alluvial groundwater (AW) and regional groundwater (RW) in relation to the Global Meteoric Water Line (GMWL) during baseflow (Nov-01).

Figure 6.19 Change in 87Sr/86Sr and inverse Sr$^{2+}$ concentration in stream water (SW) in between stations 9 and 4 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 9 and (a) shallow AW, and (b) shallow RW to estimate the potential proportions of each water source present in stream water at sampling station 4.

Figure 6.20 Change in 87Sr/86Sr and inverse Sr$^{2+}$ concentration in stream water (SW) in between stations 9 and 4 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 9 and (a) minimum deep AW, and (b) maximum deep AW values to estimate the potential proportion of deep AW present in stream water at sampling station 4.
Figure 6.21 Change in $^{87}\text{Sr} / ^{86}\text{Sr}$ and inverse Sr$^{2+}$ concentration in stream water (SW) in between stations 9 and 4 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 7 and shallow RW to estimate potential shallow RW discharge to stream flow between stations 7 and 4.

Figure 6.22 Change in $^{87}\text{Sr} / ^{86}\text{Sr}$ and inverse Sr$^{2+}$ concentration in stream water (SW) in between stations 9 and 4 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 7 and (a) minimum, and (b) maximum deep AW values to estimate potential deep AW discharge to stream flow between stations 7 and 4.

Figure 6.23 Change in $^{87}\text{Sr} / ^{86}\text{Sr}$ and inverse Sr$^{2+}$ concentration in stream water (SW) in between stations 4 and 3 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 4, shallow AW, deep AW and shallow RW to estimate potential proportions of groundwater discharge to stream flow between stations 4 and 3.

Figure 6.24 Change in $^{87}\text{Sr} / ^{86}\text{Sr}$ and inverse Sr$^{2+}$ concentration in stream water (SW) in between stations 3 and 2 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 3 and shallow AW to estimate potential proportions of groundwater discharge to stream flow between stations 3 and 2.

Figure 6.25 Change in $^{87}\text{Sr} / ^{86}\text{Sr}$ and inverse Sr$^{2+}$ concentration in stream water (SW) in between stations 2 and 1 compared to alluvial groundwater (AW) and regional groundwater (RW) values. Theoretical mixing lines were constructed between SW at station 2, deep AW and RW to estimate potential proportions of groundwater discharge to stream flow between stations 2 and 1.

Figure 6.26 Estimated ranges of alluvial groundwater (AW), and regional groundwater (RW) discharge to stream flow during (a and b) flood recession (Mar-01), and (c and d) baseflow (Nov-01).
LIST OF TABLES

Table 1.1 222Rn activity of groundwater from sedimentary and alluvial aquifers (adapted from Faure 1986).

Table 1.2 Atmospheric 222Rn concentrations.

Table 1.3 Estimated dissolution times and likely ranges of 87Sr/86Sr assuming an initial ratio of 0.705 and Rb/Sr typical for Palaeozoic granites of eastern Australia (0.3 – 2.0). Modified from Douglas et al. (1995).

Table 1.4 Advantages and limitations of Cl-, 222Rn, δ2H & δ18O and Sr2+ & 87Sr/86Sr for distinguishing between water reservoirs and for interpreting stream and groundwater interactions.

Table 1.5 Average monthly and annual relative humidity (%) measured daily at 9 am and 3 pm.

Table 2.1 Average stream height (h), average stream velocity (v) and stream discharge (Q) measured at selected sites using a pycnometer.

Table 3.1 Steady state 222Rn concentration (Cs, Bq L-1) in alluvial aquifer material at Warkworth (site 1).

Table 4.1 Stagnant film thickness (z) estimates and variable parameters (upstream and downstream 222Rn concentrations; C0, Cn, distance and travel time between sampling stations; x, t, average stream height and velocity; h, v) for each run of river transect in the Wollombi Brook (flood recessions May-00 and Nov-01, and baseflow Mar-01) based on 222Rn gas exchange equation (4.1).

Table 4.2 Background 222Rn concentrations in stream water (Cθ) due to sediment flux (Bq L-1).

Table 4.3 Background 222Rn concentrations (Cθ) in stream water (Bq L-1) estimated using equation (4.9).

Table 4.4 Summary of parameters required for estimation of the distance of 222Rn persistence (x) in stream water following groundwater discharge based on 222Rn gas exchange with the atmosphere (equation 4.10).

Table 4.5 Summary of the distance of 222Rn persistence in stream water estimates (x km) for the upper Wollombi Brook during flood recession (Wollombi, site 10, Mar-01) and the lower Wollombi Brook during baseflow (Fordwich, site 3, Nov-01).

Table 4.6 Summary of steady state 222Rn emanation from alluvial aquifer material, maximum and minimum 222Rn concentrations measured in regional
groundwater in the lower, mid and mid-upper regions of the Wollombi Brook Catchment.

Table 4.7 Comparison of empirical (equation 4.18) and numerical (equations 4.20 and 4.21) estimates of the maximum distance (x) in between stream water 222Rn sampling stations such that estimates of maximum groundwater (equations 4.16 and 4.17) contribution to stream flow are well constrained (<100%).

Table 6.1 Summary of the percentages of alluvial groundwater (AGW) and regional groundwater (RGW) discharges to stream flow between consecutive stream water sampling stations (1 to 13) during flood recession (Mar-01) and baseflow (Nov-01).
LIST OF SYMBOLS

\(C^0 \) \(^{222}\text{Rn} \) activity upstream (Bq L\(^{-1}\))

\(C_{\text{max}}^0 \) Maximum predicted upstream \(^{222}\text{Rn} \) activity (Bq L\(^{-1}\))

\(C_{\text{ss}} \) Steady state \(^{222}\text{Rn} \) activity of groundwater (Bq L\(^{-1}\))

\(C_{\text{ss}}^{AGW} \) Steady state \(^{222}\text{Rn} \) emanation from alluvial aquifer sands (Bq L\(^{-1}\))

\(C^B \) Background \(^{222}\text{Rn} \) activity in stream water (Bq L\(^{-1}\))

\(C_{\text{max}}^{RGW} \) Maximum \(^{222}\text{Rn} \) activity measured in regional groundwater (Bq L\(^{-1}\))

\(C_{\text{min}}^{RGW} \) Minimum \(^{222}\text{Rn} \) activity measured in regional groundwater (Bq L\(^{-1}\))

\(C_{\text{GW}}^{RGW} \) \(^{222}\text{Rn} \) activity of groundwater (Bq L\(^{-1}\))

\(C_{i-1}^{\text{int}} \) \(^{222}\text{Rn} \) activity upstream of a distance interval, \(i \) (Bq L\(^{-1}\))

\(C_{i}^{\text{int}} \) \(^{222}\text{Rn} \) activity downstream of a distance interval, \(i \), due to radioactive decay losses (Bq L\(^{-1}\))

\(C_{\text{TR}}^{\text{int}} \) \(^{222}\text{Rn} \) activity downstream of a distance interval, \(i \), due to turbulent losses (Bq L\(^{-1}\))

\(C_{\text{min}}^{\text{int}} \) Minimum \(^{222}\text{Rn} \) activity of groundwater input to streamflow (Bq L\(^{-1}\))

\(C^{\text{int}} \) \(^{222}\text{Rn} \) activity of stream water lost to the adjacent aquifer (Bq L\(^{-1}\))

\(c_n^{\text{int}} \) \(^{222}\text{Rn} \) activity within aquifer matrix (Bq L\(^{-1}\))

\(C_{\text{m}} \) Cl\(^-\) concentration of mixed pore water and deionised water (mg L\(^{-1}\))

\(C_{\text{pw}} \) Cl\(^-\) concentration of pore water (mg L\(^{-1}\))

\(C^n \) \(^{222}\text{Rn} \) activity downstream (Bq L\(^{-1}\))

\(C^n_R \) \(^{222}\text{Rn} \) activity downstream due to radioactive decay (Bq L\(^{-1}\))

\(C^n_T \) \(^{222}\text{Rn} \) activity downstream (Bq L\(^{-1}\))

\(C^n_{\text{TR}} \) Predicted \(^{222}\text{Rn} \) activity downstream after turbulent and radioactive losses (Bq L\(^{-1}\))

\(C^{222} \) The \(^{222}\text{Rn} \) concentration in a closed system (Bq L\(^{-1}\))

\(C^{226} \) \(^{222}\text{Rn} \) concentration produced by the radioactive decay of \(^{226}\text{Ra} \) (Bq L\(^{-1}\))

\(D \) Molecular diffusivity of \(^{222}\text{Rn} \) (at 23°C 1.2 × 10\(^{-9}\) m\(^2\) s\(^{-1}\))
\(E \)
\(^{222}\text{Rn} \) emanation rate
\(\text{Bq kg}^{-1} \)

\(\varepsilon \)
Porosity
\(\text{cm}^3 \text{ cm}^{-3} \)

\(f \)
Fraction of surface water lost to the adjacent aquifer

\(f_{aq} \)
Porosity of aquifer material (expressed as a fraction)

\(f^0 \)
Fraction of surface water lost to the adjacent aquifer that originates from \(Q^0 \)

\(1 - f^0 \)
Fraction of surface water lost to the adjacent aquifer that originates from \(Q^{gw} \)

\(h \)
Average depth of stream
\(\text{m} \)

\(h_{eq} \)
Equivalent freshwater head
\(\text{m} \)

\(h_m \)
Measured head
\(\text{m} \)

\(i \)
Interval number, integer fraction of \(n \)

\(L_n^0 \)
\(^{222}\text{Rn} \) loss from stream water between consecutive surface water sampling stations (i.e. between \(0 \) and \(n \))
\(\text{Bq L}^{-1} \)

\(L_{nw}^g \)
\(^{222}\text{Rn} \) loss from groundwater that contributes to stream flow between consecutive surface water sampling stations (i.e. between \(0 \) and \(n \))
\(\text{Bq L}^{-1} \)

\(L_j^0 \)
\(^{222}\text{Rn} \) loss from stream water before it discharges to the adjacent aquifer
\(\text{Bq L}^{-1} \)

\(L_{ij}^g \)
\(^{222}\text{Rn} \) loss from groundwater that contributes to stream flow and later recharges the adjacent aquifer
\(\text{Bq L}^{-1} \)

\(\lambda \)
\(^{222}\text{Rn} \) decay constant
\(2.098 \times 10^{-5} \text{ s}^{-1} \)

\(M_{cw} \)
Mass of wet soil and chipette
\(\text{g} \)

\(M_{cd} \)
Mass of dry soil and chipette
\(\text{g} \)

\(M_c \)
Mass of chipette
\(\text{g} \)

\(M_d \)
Mass of oven-dried soil
\(\text{g} \)

\(M_{dw} \)
Mass of deionised water
\(\text{g} \)

\(M_{pw} \)
Mass of pore water (\(M_{pw} = \theta_g \times M_w \))
\(\text{g} \)

\(M_w \)
Mass of wet soil
\(\text{g} \)

\(n \)
Number of equal sections over a constant distance, \(x \)

\(Q^0 \)
Stream discharge at upstream sampling station
\(\text{m}^3 \text{ s}^{-1} \)
\(Q' \) Stream water discharged (lost) to the adjacent aquifer \((m^3 \text{ s}^{-1}) \)

\(Q'' \) Stream discharge at downstream sampling station \((m^3 \text{ s}^{-1}) \)

\(Q_{gw} \) Groundwater discharged to stream flow \((m^3 \text{ s}^{-1}) \)

\(Q'\text{w} \) Stream discharge \((m^3 \text{ s}^{-1}) \)

\(Q_{gw}/Q'\text{w} \) Fraction of groundwater in stream water at downstream sampling station

\(^{222}\text{Rn}_{\text{meas}} \) \(^{222}\text{Rn} \) activity measured in groundwater \((\text{Bq L}^{-1}) \)

\(\rho_b \) Bulk density \((\text{g cm}^{-3}) \)

\(\rho_{fw} \) Density of freshwater \((1 \text{ kg m}^{-3}) \)

\(\rho_m \) Density of measured groundwater \((\text{kg m}^{-3}) \)

\(\rho_p \) Particle density \((\text{g cm}^{-3}) \)

\(\theta_g \) Gravimetric water content of soils \((\text{g}^{-1} \text{ g}^{-1}) \)

\(t \) Travel time between consecutive sampling stations \((\text{s}) \)

\(T \) Time of \(^{222}\text{Rn} \) ingrowth \((\text{s}) \)

\(\text{TDS} \) Total dissolved solids \((\text{mg L}^{-1}) \)

\(\text{TDS}_{\text{m}} \) Total dissolved solids measured in groundwater \((\text{kg m}^{-3}) \)

\(v \) Velocity of stream water \((\text{m s}^{-1}) \)

\(V \) Volume of soil core \((\text{cm}^{3}) \)

\(V_{gw} \) Volume of groundwater discharged to the stream channel \((\text{L}) \)

\(x \) Distance between sampling stations \((\text{m}) \)

\(z \) Thickness of stagnant film \((\text{m}) \)

\(\%AGW_{\text{min}} \) Minimum percentage of stream water sourced from alluvial groundwater

\(\%RGW_{\text{min}} \) Minimum percentage of stream water sourced from regional groundwater

\(\%AGW_{\text{max}} \) Maximum fraction of stream water sourced from alluvial groundwater

\(\%RGW_{\text{max}} \) Maximum fraction of stream water sourced from regional groundwater
ABSTRACT

Regions of surface water and groundwater exchange are major sites for the transfer and transformation of solutes and nutrients between stream and subsurface environments. Conventional stream and groundwater exchange investigations are limited by methodologies that require intensive field investigations and/or the set-up of expensive infrastructure. These difficulties are exacerbated where hydraulic gradients are very low and stream discharge highly variable. This thesis uses a suite of environmental tracers (Cl, 222Rn, δ^2H & δ^{18}O, 87Sr/86Sr) to characterise the extent of stream and groundwater exchange between a sand bed stream and adjacent alluvial aquifer in a subtropical catchment (the Wollombi Brook) of eastern Australia. The aims were to identify sources and relative contributions of different sources of groundwater to stream discharge and specifically to improve the methodology of using 222Rn to obtain quantitative estimate of groundwater fluxes.

The sensitivity of the 222Rn technique for identifying groundwater discharge based on the 222Rn concentration in stream water was improved via an iterative numerical approach to account for 222Rn loss from stream water via turbulent gas exchange and radioactive decay. Optimal distances between stream sampling points for defining the magnitude of groundwater discharge to stream flow based on 222Rn concentrations in stream water is a function of average stream velocity and water depth. The maximum allowable distance between sampling points for determining the magnitude of groundwater discharge to the Wollombi Brook was 2 km. This work showed that groundwater discharged to all reaches of the Wollombi Brook during baseflow and flood recession conditions. Alluvial groundwater contributed $<30\%$ of water to stream flow in the mid Wollombi Brook catchment.
Dilution of steady-state ^{222}Rn concentrations measured in transects from the stream to the alluvial sediments showed that significant surface water and groundwater exchange occurs even when gradients between surface water and groundwater are low. Lateral stream water influx to the adjacent alluvial aquifer was more extensive in the lowland areas of the Wollombi Catchment during low flow than flood recession conditions. Extensive stream water influx to the adjacent alluvial aquifer occurs contrary to the net direction of surface water and groundwater flux (as indicated by hydraulic gradients toward the stream channel). The rate of stream and groundwater exchange within the adjacent alluvial aquifer appears to be greatest during baseflow conditions. Fresh alluvial groundwater appeared to provide a buffer against higher salinity regional groundwater discharge to the alluvial aquifer in some reaches of the Wollombi Brook catchment. Pumping of the alluvial aquifer and diversions of surface water may jeopardise the water quality and volume of the alluvial aquifer and induce water flow from the regional aquifer toward the stream, potentially salinising the fresh alluvial aquifer and subsequently the stream.

The change in the Cl$^{-}$ concentration and the variation in slope of the δ^2H-δ^{18}O line between consecutive stream sampling points could be used to differentiate between regional and alluvial groundwater discharge to stream flow. Incorporating this information with three-component end-member mixing using $[\text{Sr}^{2+}]$ and $^{87}\text{Sr}^{86}\text{Sr}$ showed that stream and alluvial groundwater exchange within the stream channel was highest in the lowland floodplains during low flow conditions. The least stream and alluvial groundwater exchange occurred in the low streambed gradient mid reaches of the Wollombi Brook regardless of stream stage. The greatest difference in the degree of stream and alluvial groundwater exchange between high and low stream stages occurred in the lowland floodplains of the Wollombi Brook.
DECLARATION OF ORIGINALITY

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by any other person except where due reference is made in the text.

Jodie Lee Pritchard
August 2005
PUBLICATIONS ASSOCIATED WITH THIS THESIS

JOURNAL PAPERS

TECHNICAL REPORTS

CONFERENCE PAPERS

ACKNOWLEDGEMENTS

The work presented in this thesis was realised through the support of numerous organisations and individuals. I wish to thank Land and Water Australia for funding the project (Project No. CLW7), the New South Wales Government Department of Natural Resources (DIPNR), CSIRO Land & Water, Flinders University and Centre for Groundwater Studies for financial and in-kind support they provided for this project.

I owe a great deal of thanks to my supervisor Dr. Andrew Herczeg (CSIRO Land & Water, Adelaide) for sharing his vast geochemical knowledge and for his continual guidance and encouragement. Especially in the last six months, when exploring Europe would have been far more appealing than reviewing chapters of my thesis. Thank you to my co-supervisor Dr. Corinne Le Gal La Salle (Flinders University) for managing the university administration.

I thank my colleagues at CSIRO Land & Water (Adelaide) for their invaluable knowledge, support and encouragement. Specifically I would like to thank Dr. Sébastien Lamontagne for our countless biogeochemistry discussions and for his enthusiastic approach to field expeditions. Thank you to my dear friend John Dighton for his moral support, encouragement and tremendous technical skill and help in the field and laboratory. John and Sébastien made field trips a real joy with their impromptu folk music renditions. I wish to thank Dr. Peter Cook for his technical help in measuring 222Rn emanation. Thank you to Megan Lefournour and Michelle Caputo for teaching me the delicate art of deuterium and oxygen-18 analyses and for making laboratory work a party.
My sincere thanks to Dr. John Foden (Adelaide University) for opening up his laboratories to me and to David Bruce (Adelaide University) for his attentive instruction in strontium isotope analysis.

I benefited enormously from philosophical discussions with staff from Flinders University and with my fellow PhD students. A special thanks to Dr. John Hutson for his help and enthusiasm during the inception phase of my research. Many thanks to Rebecca Doble for sharing the highs and lows of every step of the PhD experience with me.

Thank you to my employer, REM, for supporting me in my studies over the last year and a half and for allowing me the flexibility to finish writing up.

My family have provided vital ongoing support throughout my studies. Thank you to my parents Teresa and Don for their unreserved support and encouragement, and my sister Mandy for her love and cheer.

Last but not least I thank my extraordinarily patient companion Doug Weatherill. He has helped me by taking on mundane tasks such as formatting my references through to discussing the finer points of numerical modelling with me.